Get started


July 12, 2024

Welcome to ValidMind!

ValidMind is a platform designed to streamline the management of risk for AI models, including those used in machine learning (ML), natural language processing (NLP), and large language models (LLMs). The platform offers tools that cater to both model developers and validators, simplifying key aspects of model risk management.

What do I use the ValidMind platform for?

Model developers and validators play important roles in managing model risk, including risk that stems from generative AI and machine learning models. From complying with regulations to ensuring that institutional standards are followed, your team members are tasked with the careful documentation, testing, and independent validation of models.

The purpose of these efforts is to ensure that good risk management principles are followed throughout the model lifecycle. To assist you with these processes of documenting and validating models, ValidMind provides a number of tools that you can employ regardless of the technology used to build your models.

An image showing the two main components of ValidMind. The developer framework that integrates with your existing developer environment, and the ValidMind Platform UI.

The ValidMind AI risk platform provides two main product components:

  1. The ValidMind Developer Framework is a library of tools and methods designed to automate generating model documentation and running validation tests. The developer framework is designed to be platform agnostic and integrates with your existing development environment.

    For Python developers, a single installation command provides access to all the functions:

    %pip install validmind
  2. The ValidMind Platform UI is an easy-to-use web-based UI that enables you to track the model lifecycle:

  • Customize workflows to manage the model documentation and validation process.
  • Review and edit the documentation and test metrics generated by the developer framework.
  • Collaborate with and capture feedback from model developers and model validators.
  • Generate validation reports and approvals.

For more information about the benefits that ValidMind can offer, check out the ValidMind overview.

Key ValidMind concepts
model documentation
A structured and detailed record pertaining to a model, encompassing key components such as its underlying assumptions, methodologies, data sources, inputs, performance metrics, evaluations, limitations, and intended uses.

Within the realm of model risk management, this documentation serves to ensure transparency, adherence to regulatory requirements, and a clear understanding of potential risks associated with the model’s application.

validation report
A formal document produced after a model validation process, outlining the findings, assessments, and recommendations related to a specific model’s performance, appropriateness, and limitations. Provides a comprehensive review of the model’s conceptual framework, data sources and integrity, calibration methods, and performance outcomes.

Within model risk management, the validation report is crucial for ensuring transparency, demonstrating regulatory compliance, and offering actionable insights for model refinement or adjustments.

template, documentation template
Functions as a test suite and lays out the structure of model documentation, segmented into various sections and sub-sections. Documentation templates define the structure of your model documentation, specifying the tests that should be run, and how the results should be displayed.

ValidMind templates come with pre-defined sections, similar to test placeholders, including boilerplates and spaces designated for documentation and test results. When rendered, produces a document that model developers can use for model validation.

A function contained in the developer framework, designed to run a specific quantitative test on the dataset or model. Test results are sent to the ValidMind platform to generate the model documentation according to the template that is associated with the documentation.

Tests are the building blocks of ValidMind, used to evaluate and document models and datasets, and can be run individually or as part of a suite defined by your model documentation template.

metrics, custom metrics
Metrics are a subset of tests that do not have thresholds. Custom metrics are functions that you define to evaluate your model or dataset. These functions can be registered with ValidMind to be used in the platform.

In the context of ValidMind’s Jupyter Notebooks, metrics and tests can be thought of as interchangeable concepts.

Objects to be evaluated and documented in the developer framework. They can be any of the following:
  • model: A single model that has been initialized in ValidMind with vm.init_model(). See the Model Documentation or the for more information.
  • dataset: Single dataset that has been initialized in ValidMind with vm.init_dataset(). See the Dataset Documentation for more information.
  • models: A list of ValidMind models - usually this is used when you want to compare multiple models in your custom metric.
  • datasets: A list of ValidMind datasets - usually this is used when you want to compare multiple datasets in your custom metric. See this example for more information.
Additional arguments that can be passed when running a ValidMind test, used to pass additional information to a metric, customize its behavior, or provide additional context.
Custom metrics can return elements like tables or plots. Tables may be a list of dictionaries (each representing a row) or a pandas DataFrame. Plots may be matplotlib or plotly figures.
test suite
A collection of tests which are run together to generate model documentation end-to-end for specific use cases.

For example, the classifier_full_suite test suite runs tests from the tabular_dataset and classifier test suites to fully document the data and model sections for binary classification model use cases.

How do I get started?

On the ValidMind platform, everything starts with the model inventory: you first register a new model and then manage the model lifecycle through the different activities that are part of your existing model risk management processes.

Approval workflow

A typical high-level model approval workflow looks like this:

graph LR
    A[Model<br>registration] --> B[Initial<br>validation]
    B --> C[Validation<br>approval]
    C --> D[In production]
    D --> E[Periodic review<br>and revalidation]
    E --> B

New model registration
Select a documentation template when registering a new inventory model to start your model documentation. You then use the model inventory to manage the metadata associated with the model, including all compliance and regulatory attributes.
Initial validation
Triggers a new documentation workflow1 to yield a model that will be ready for production deployment after its documentation and validation reports have been approved.
Validation approval
Perform validation of the model to ensure that it meets the needs for which it was designed. You can also connect to third-party systems to send events when a model has been approved for production.
In production
Use the model in production while ensuring its ongoing reliability, accuracy, and compliance with regulations by monitoring the model’s performance.
Periodic review and revalidation
As part of regular performance monitoring or change management, you follow a process similar to that seen in the Initial validation step.

Next steps

The fastest way to explore what ValidMind can offer is with our QuickStart:

  • Try out the ValidMind Developer Framework
  • Explore the ValidMind Platform UI

If you have already tried the QuickStart, more how-to instructions and links to our FAQs can be found under Next steps.

Need an account for ValidMind?

Signing up is FREE — Create your account.