• About
  • Get Started
  • Guides
  • ValidMind Library
    • ValidMind Library
    • Supported Models
    • QuickStart Notebook

    • TESTING
    • Run Tests & Test Suites
    • Test Descriptions
    • Test Sandbox (BETA)

    • CODE SAMPLES
    • All Code Samples · LLM · NLP · Time Series · Etc.
    • Download Code Samples · notebooks.zip
    • Try it on JupyterHub

    • REFERENCE
    • ValidMind Library Python API
  • Support
  • Training
  • Releases
  • Documentation
    • About ​ValidMind
    • Get Started
    • Guides
    • Support
    • Releases

    • Python Library
    • ValidMind Library

    • ValidMind Academy
    • Training Courses
  • Log In
    • Public Internet
    • ValidMind Platform · US1
    • ValidMind Platform · CA1

    • Private Link
    • Virtual Private ValidMind (VPV)

    • Which login should I use?
  1. Test descriptions
  2. Model Validation
  3. Ragas
  4. SemanticSimilarity

EU AI Act Compliance — Read our original regulation brief on how the EU AI Act aims to balance innovation with safety and accountability, setting standards for responsible AI use

  • ValidMind Library
  • Supported models

  • QuickStart
  • Quickstart for model documentation
  • Install and initialize ValidMind Library
  • Store model credentials in .env files

  • Model Development
  • 1 — Set up ValidMind Library
  • 2 — Start model development process
  • 3 — Integrate custom tests
  • 4 — Finalize testing & documentation

  • Model Validation
  • 1 — Set up ValidMind Library for validation
  • 2 — Start model validation process
  • 3 — Developing a challenger model
  • 4 — Finalize validation & reporting

  • Model Testing
  • Run tests & test suites
    • Add context to LLM-generated test descriptions
    • Configure dataset features
    • Document multiple results for the same test
    • Explore test suites
    • Explore tests
    • Dataset Column Filters when Running Tests
    • Load dataset predictions
    • Log metrics over time
    • Run individual documentation sections
    • Run documentation tests with custom configurations
    • Run tests with multiple datasets
    • Intro to Unit Metrics
    • Understand and utilize RawData in ValidMind tests
    • Introduction to ValidMind Dataset and Model Objects
    • Run Tests
      • Run dataset based tests
      • Run comparison tests
  • Test descriptions
    • Data Validation
      • ACFandPACFPlot
      • ADF
      • AutoAR
      • AutoMA
      • AutoStationarity
      • BivariateScatterPlots
      • BoxPierce
      • ChiSquaredFeaturesTable
      • ClassImbalance
      • DatasetDescription
      • DatasetSplit
      • DescriptiveStatistics
      • DickeyFullerGLS
      • Duplicates
      • EngleGrangerCoint
      • FeatureTargetCorrelationPlot
      • HighCardinality
      • HighPearsonCorrelation
      • IQROutliersBarPlot
      • IQROutliersTable
      • IsolationForestOutliers
      • JarqueBera
      • KPSS
      • LaggedCorrelationHeatmap
      • LJungBox
      • MissingValues
      • MissingValuesBarPlot
      • MutualInformation
      • PearsonCorrelationMatrix
      • PhillipsPerronArch
      • ProtectedClassesCombination
      • ProtectedClassesDescription
      • ProtectedClassesDisparity
      • ProtectedClassesThresholdOptimizer
      • RollingStatsPlot
      • RunsTest
      • ScatterPlot
      • ScoreBandDefaultRates
      • SeasonalDecompose
      • ShapiroWilk
      • Skewness
      • SpreadPlot
      • TabularCategoricalBarPlots
      • TabularDateTimeHistograms
      • TabularDescriptionTables
      • TabularNumericalHistograms
      • TargetRateBarPlots
      • TimeSeriesDescription
      • TimeSeriesDescriptiveStatistics
      • TimeSeriesFrequency
      • TimeSeriesHistogram
      • TimeSeriesLinePlot
      • TimeSeriesMissingValues
      • TimeSeriesOutliers
      • TooManyZeroValues
      • UniqueRows
      • WOEBinPlots
      • WOEBinTable
      • ZivotAndrewsArch
      • Nlp
        • CommonWords
        • Hashtags
        • LanguageDetection
        • Mentions
        • PolarityAndSubjectivity
        • Punctuations
        • Sentiment
        • StopWords
        • TextDescription
        • Toxicity
    • Model Validation
      • BertScore
      • BleuScore
      • ClusterSizeDistribution
      • ContextualRecall
      • FeaturesAUC
      • MeteorScore
      • ModelMetadata
      • ModelPredictionResiduals
      • RegardScore
      • RegressionResidualsPlot
      • RougeScore
      • TimeSeriesPredictionsPlot
      • TimeSeriesPredictionWithCI
      • TimeSeriesR2SquareBySegments
      • TokenDisparity
      • ToxicityScore
      • Embeddings
        • ClusterDistribution
        • CosineSimilarityComparison
        • CosineSimilarityDistribution
        • CosineSimilarityHeatmap
        • DescriptiveAnalytics
        • EmbeddingsVisualization2D
        • EuclideanDistanceComparison
        • EuclideanDistanceHeatmap
        • PCAComponentsPairwisePlots
        • StabilityAnalysisKeyword
        • StabilityAnalysisRandomNoise
        • StabilityAnalysisSynonyms
        • StabilityAnalysisTranslation
        • TSNEComponentsPairwisePlots
      • Ragas
        • AnswerCorrectness
        • AspectCritic
        • ContextEntityRecall
        • ContextPrecision
        • ContextPrecisionWithoutReference
        • ContextRecall
        • Faithfulness
        • NoiseSensitivity
        • ResponseRelevancy
        • SemanticSimilarity
      • Sklearn
        • AdjustedMutualInformation
        • AdjustedRandIndex
        • CalibrationCurve
        • ClassifierPerformance
        • ClassifierThresholdOptimization
        • ClusterCosineSimilarity
        • ClusterPerformanceMetrics
        • CompletenessScore
        • ConfusionMatrix
        • FeatureImportance
        • FowlkesMallowsScore
        • HomogeneityScore
        • HyperParametersTuning
        • KMeansClustersOptimization
        • MinimumAccuracy
        • MinimumF1Score
        • MinimumROCAUCScore
        • ModelParameters
        • ModelsPerformanceComparison
        • OverfitDiagnosis
        • PermutationFeatureImportance
        • PopulationStabilityIndex
        • PrecisionRecallCurve
        • RegressionErrors
        • RegressionErrorsComparison
        • RegressionPerformance
        • RegressionR2Square
        • RegressionR2SquareComparison
        • RobustnessDiagnosis
        • ROCCurve
        • ScoreProbabilityAlignment
        • SHAPGlobalImportance
        • SilhouettePlot
        • TrainingTestDegradation
        • VMeasure
        • WeakspotsDiagnosis
      • Statsmodels
        • AutoARIMA
        • CumulativePredictionProbabilities
        • DurbinWatsonTest
        • GINITable
        • KolmogorovSmirnov
        • Lilliefors
        • PredictionProbabilitiesHistogram
        • RegressionCoeffs
        • RegressionFeatureSignificance
        • RegressionModelForecastPlot
        • RegressionModelForecastPlotLevels
        • RegressionModelSensitivityPlot
        • RegressionModelSummary
        • RegressionPermutationFeatureImportance
        • ScorecardHistogram
    • Ongoing Monitoring
      • CalibrationCurveDrift
      • ClassDiscriminationDrift
      • ClassificationAccuracyDrift
      • ClassImbalanceDrift
      • ConfusionMatrixDrift
      • CumulativePredictionProbabilitiesDrift
      • FeatureDrift
      • PredictionAcrossEachFeature
      • PredictionCorrelation
      • PredictionProbabilitiesHistogramDrift
      • PredictionQuantilesAcrossFeatures
      • ROCCurveDrift
      • ScoreBandsDrift
      • ScorecardHistogramDrift
      • TargetPredictionDistributionPlot
    • Prompt Validation
      • Bias
      • Clarity
      • Conciseness
      • Delimitation
      • NegativeInstruction
      • Robustness
      • Specificity
  • Test sandbox beta

  • Notebooks
  • Code samples
    • Capital Markets
      • Quickstart for knockout option pricing model documentation
      • Quickstart for Heston option pricing model using QuantLib
    • Credit Risk
      • Document an application scorecard model
      • Document an application scorecard model
      • Document an application scorecard model
      • Document a credit risk model
      • Document an application scorecard model
    • Custom Tests
      • Implement custom tests
      • Integrate external test providers
    • Model Validation
      • Validate an application scorecard model
    • Nlp and Llm
      • Sentiment analysis of financial data using a large language model (LLM)
      • Summarization of financial data using a large language model (LLM)
      • Sentiment analysis of financial data using Hugging Face NLP models
      • Summarization of financial data using Hugging Face NLP models
      • Automate news summarization using LLMs
      • Prompt validation for large language models (LLMs)
      • RAG Model Benchmarking Demo
      • RAG Model Documentation Demo
    • Ongoing Monitoring
      • Ongoing Monitoring for Application Scorecard
      • Quickstart for ongoing monitoring of models with ValidMind
    • Regression
      • Document a California Housing Price Prediction regression model
    • Time Series
      • Document a time series forecasting model
      • Document a time series forecasting model

  • Reference
  • ValidMind Library Python API

On this page

  • SemanticSimilarity
    • Configuring Columns
  • Edit this page
  • Report an issue
  1. Test descriptions
  2. Model Validation
  3. Ragas
  4. SemanticSimilarity

SemanticSimilarity

Calculates the semantic similarity between generated responses and ground truths

The concept of Answer Semantic Similarity pertains to the assessment of the semantic resemblance between the generated answer and the ground truth. This evaluation is based on the reference and the response, with values falling within the range of 0 to 1. A higher score signifies a better alignment between the generated response and the ground truth.

Measuring the semantic similarity between answers can offer valuable insights into the quality of the generated response. This evaluation utilizes a cross-encoder model to calculate the semantic similarity score.

See this paper for more details: https://arxiv.org/pdf/2108.06130.pdf

The following steps are involved in computing the answer similarity score: 1. Vectorize the ground truth answer using the specified embedding model. 2. Vectorize the generated answer using the same embedding model. 3. Compute the cosine similarity between the two vectors.

Configuring Columns

This metric requires the following columns in your dataset:

  • response (str): The text response generated by the model.
  • reference (str): The ground truth answer that the generated answer is compared against.

If the above data is not in the appropriate column, you can specify different column names for these fields using the parameters response_column, and reference_column.

For example, if your dataset has this data stored in different columns, you can pass the following parameters:

{
response_column": "llm_output_col",
reference_column": "my_ground_truth_col",
}

If answer is stored as a dictionary in another column, specify the column and key like this:

pred_col = dataset.prediction_column(model)
params = {
response_column": f"{pred_col}.generated_answer",
reference_column": "my_ground_truth_col",
}

For more complex situations, you can use a function to extract the data:

pred_col = dataset.prediction_column(model)
params = {
response_column": lambda row: "\\n\\n".join(row[pred_col]["messages"]),
reference_column": "my_ground_truth_col",
}
ResponseRelevancy
AdjustedMutualInformation

© Copyright 2025 ValidMind Inc. All Rights Reserved.

  • Edit this page
  • Report an issue
Cookie Preferences
  • validmind.com

  • Privacy Policy

  • Terms of Use