• About
  • Get Started
  • Guides
  • ValidMind Library
    • ValidMind Library
    • Supported Models
    • QuickStart Notebook

    • TESTING
    • Run Tests & Test Suites
    • Test Descriptions
    • Test Sandbox (BETA)

    • CODE SAMPLES
    • All Code Samples · LLM · NLP · Time Series · Etc.
    • Download Code Samples · notebooks.zip
    • Try it on JupyterHub

    • REFERENCE
    • ValidMind Library Python API
  • Support
  • Training
  • Releases
  • Documentation
    • About ​ValidMind
    • Get Started
    • Guides
    • Support
    • Releases

    • Python Library
    • ValidMind Library

    • ValidMind Academy
    • Training Courses
  • Log In
    • Public Internet
    • ValidMind Platform · US1
    • ValidMind Platform · CA1

    • Private Link
    • Virtual Private ValidMind (VPV)

    • Which login should I use?
  1. Run tests & test suites
  2. Explore tests

EU AI Act Compliance — Read our original regulation brief on how the EU AI Act aims to balance innovation with safety and accountability, setting standards for responsible AI use

  • ValidMind Library
  • Supported models

  • QuickStart
  • Quickstart for model documentation
  • Install and initialize ValidMind Library
  • Store model credentials in .env files

  • Model Development
  • 1 — Set up ValidMind Library
  • 2 — Start model development process
  • 3 — Integrate custom tests
  • 4 — Finalize testing & documentation

  • Model Validation
  • 1 — Set up ValidMind Library for validation
  • 2 — Start model validation process
  • 3 — Developing a challenger model
  • 4 — Finalize validation & reporting

  • Model Testing
  • Run tests & test suites
    • Add context to LLM-generated test descriptions
    • Configure dataset features
    • Document multiple results for the same test
    • Explore test suites
    • Explore tests
    • Dataset Column Filters when Running Tests
    • Load dataset predictions
    • Log metrics over time
    • Run individual documentation sections
    • Run documentation tests with custom configurations
    • Run tests with multiple datasets
    • Intro to Unit Metrics
    • Understand and utilize RawData in ValidMind tests
    • Introduction to ValidMind Dataset and Model Objects
    • Run Tests
      • Run dataset based tests
      • Run comparison tests
  • Test descriptions
    • Data Validation
      • ACFandPACFPlot
      • ADF
      • AutoAR
      • AutoMA
      • AutoStationarity
      • BivariateScatterPlots
      • BoxPierce
      • ChiSquaredFeaturesTable
      • ClassImbalance
      • DatasetDescription
      • DatasetSplit
      • DescriptiveStatistics
      • DickeyFullerGLS
      • Duplicates
      • EngleGrangerCoint
      • FeatureTargetCorrelationPlot
      • HighCardinality
      • HighPearsonCorrelation
      • IQROutliersBarPlot
      • IQROutliersTable
      • IsolationForestOutliers
      • JarqueBera
      • KPSS
      • LaggedCorrelationHeatmap
      • LJungBox
      • MissingValues
      • MissingValuesBarPlot
      • MutualInformation
      • PearsonCorrelationMatrix
      • PhillipsPerronArch
      • ProtectedClassesCombination
      • ProtectedClassesDescription
      • ProtectedClassesDisparity
      • ProtectedClassesThresholdOptimizer
      • RollingStatsPlot
      • RunsTest
      • ScatterPlot
      • ScoreBandDefaultRates
      • SeasonalDecompose
      • ShapiroWilk
      • Skewness
      • SpreadPlot
      • TabularCategoricalBarPlots
      • TabularDateTimeHistograms
      • TabularDescriptionTables
      • TabularNumericalHistograms
      • TargetRateBarPlots
      • TimeSeriesDescription
      • TimeSeriesDescriptiveStatistics
      • TimeSeriesFrequency
      • TimeSeriesHistogram
      • TimeSeriesLinePlot
      • TimeSeriesMissingValues
      • TimeSeriesOutliers
      • TooManyZeroValues
      • UniqueRows
      • WOEBinPlots
      • WOEBinTable
      • ZivotAndrewsArch
      • Nlp
        • CommonWords
        • Hashtags
        • LanguageDetection
        • Mentions
        • PolarityAndSubjectivity
        • Punctuations
        • Sentiment
        • StopWords
        • TextDescription
        • Toxicity
    • Model Validation
      • BertScore
      • BleuScore
      • ClusterSizeDistribution
      • ContextualRecall
      • FeaturesAUC
      • MeteorScore
      • ModelMetadata
      • ModelPredictionResiduals
      • RegardScore
      • RegressionResidualsPlot
      • RougeScore
      • TimeSeriesPredictionsPlot
      • TimeSeriesPredictionWithCI
      • TimeSeriesR2SquareBySegments
      • TokenDisparity
      • ToxicityScore
      • Embeddings
        • ClusterDistribution
        • CosineSimilarityComparison
        • CosineSimilarityDistribution
        • CosineSimilarityHeatmap
        • DescriptiveAnalytics
        • EmbeddingsVisualization2D
        • EuclideanDistanceComparison
        • EuclideanDistanceHeatmap
        • PCAComponentsPairwisePlots
        • StabilityAnalysisKeyword
        • StabilityAnalysisRandomNoise
        • StabilityAnalysisSynonyms
        • StabilityAnalysisTranslation
        • TSNEComponentsPairwisePlots
      • Ragas
        • AnswerCorrectness
        • AspectCritic
        • ContextEntityRecall
        • ContextPrecision
        • ContextPrecisionWithoutReference
        • ContextRecall
        • Faithfulness
        • NoiseSensitivity
        • ResponseRelevancy
        • SemanticSimilarity
      • Sklearn
        • AdjustedMutualInformation
        • AdjustedRandIndex
        • CalibrationCurve
        • ClassifierPerformance
        • ClassifierThresholdOptimization
        • ClusterCosineSimilarity
        • ClusterPerformanceMetrics
        • CompletenessScore
        • ConfusionMatrix
        • FeatureImportance
        • FowlkesMallowsScore
        • HomogeneityScore
        • HyperParametersTuning
        • KMeansClustersOptimization
        • MinimumAccuracy
        • MinimumF1Score
        • MinimumROCAUCScore
        • ModelParameters
        • ModelsPerformanceComparison
        • OverfitDiagnosis
        • PermutationFeatureImportance
        • PopulationStabilityIndex
        • PrecisionRecallCurve
        • RegressionErrors
        • RegressionErrorsComparison
        • RegressionPerformance
        • RegressionR2Square
        • RegressionR2SquareComparison
        • RobustnessDiagnosis
        • ROCCurve
        • ScoreProbabilityAlignment
        • SHAPGlobalImportance
        • SilhouettePlot
        • TrainingTestDegradation
        • VMeasure
        • WeakspotsDiagnosis
      • Statsmodels
        • AutoARIMA
        • CumulativePredictionProbabilities
        • DurbinWatsonTest
        • GINITable
        • KolmogorovSmirnov
        • Lilliefors
        • PredictionProbabilitiesHistogram
        • RegressionCoeffs
        • RegressionFeatureSignificance
        • RegressionModelForecastPlot
        • RegressionModelForecastPlotLevels
        • RegressionModelSensitivityPlot
        • RegressionModelSummary
        • RegressionPermutationFeatureImportance
        • ScorecardHistogram
    • Ongoing Monitoring
      • CalibrationCurveDrift
      • ClassDiscriminationDrift
      • ClassificationAccuracyDrift
      • ClassImbalanceDrift
      • ConfusionMatrixDrift
      • CumulativePredictionProbabilitiesDrift
      • FeatureDrift
      • PredictionAcrossEachFeature
      • PredictionCorrelation
      • PredictionProbabilitiesHistogramDrift
      • PredictionQuantilesAcrossFeatures
      • ROCCurveDrift
      • ScoreBandsDrift
      • ScorecardHistogramDrift
      • TargetPredictionDistributionPlot
    • Prompt Validation
      • Bias
      • Clarity
      • Conciseness
      • Delimitation
      • NegativeInstruction
      • Robustness
      • Specificity
  • Test sandbox beta

  • Notebooks
  • Code samples
    • Capital Markets
      • Quickstart for knockout option pricing model documentation
      • Quickstart for Heston option pricing model using QuantLib
    • Credit Risk
      • Document an application scorecard model
      • Document an application scorecard model
      • Document an application scorecard model
      • Document a credit risk model
      • Document an application scorecard model
    • Custom Tests
      • Implement custom tests
      • Integrate external test providers
    • Model Validation
      • Validate an application scorecard model
    • Nlp and Llm
      • Sentiment analysis of financial data using a large language model (LLM)
      • Summarization of financial data using a large language model (LLM)
      • Sentiment analysis of financial data using Hugging Face NLP models
      • Summarization of financial data using Hugging Face NLP models
      • Automate news summarization using LLMs
      • Prompt validation for large language models (LLMs)
      • RAG Model Benchmarking Demo
      • RAG Model Documentation Demo
    • Ongoing Monitoring
      • Ongoing Monitoring for Application Scorecard
      • Quickstart for ongoing monitoring of models with ValidMind
    • Regression
      • Document a California Housing Price Prediction regression model
    • Time Series
      • Document a time series forecasting model
      • Document a time series forecasting model

  • Reference
  • ValidMind Library Python API

On this page

  • Contents
  • Listing All Tests
  • Understanding Tags and Task Types
  • Searching for Specific Tests using tags and tasks
  • Programmatic Use
    • Delving into Test Details with describe_test
    • Next steps
      • Discover more learning resources
  • Edit this page
  • Report an issue
  1. Run tests & test suites
  2. Explore tests

Explore tests

View and learn more about the tests available in the ValidMind Library, including code examples and usage of key functions.

In this notebook, we'll dive deep into the utilities available for viewing and understanding the various tests that ValidMind provides through the tests module. Whether you're just getting started or looking for advanced tips, you'll find clear examples and explanations to assist you every step of the way.

Before we go into the details, let's import the describe_test and list_tests functions from the validmind.tests module. These are the two functions that can be used to easily filter through tests and view details for individual tests.

from validmind.tests import (
    describe_test,
    list_tests,
    list_tasks,
    list_tags,
    list_tasks_and_tags,
)

Contents

  • Listing All Tests
  • Understanding Tags and Task Types
  • Searching for Specific Tests using tags and tasks
  • Delving into Test Details with describe_test
  • Next steps
    • Discover more learning resources

Listing All Tests

The list_tests function provides a convenient way to retrieve all available tests in the validmind.tests module. When invoked without any parameters, it returns a pandas DataFrame containing detailed information about each test.

list_tests()
ID Name Description Required Inputs Params Tags Tasks
validmind.data_validation.ACFandPACFPlot AC Fand PACF Plot Analyzes time series data using Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots to... ['dataset'] {} ['time_series_data', 'forecasting', 'statistical_test', 'visualization'] ['regression']
validmind.data_validation.ADF ADF Assesses the stationarity of a time series dataset using the Augmented Dickey-Fuller (ADF) test.... ['dataset'] {} ['time_series_data', 'statsmodels', 'forecasting', 'statistical_test', 'stationarity'] ['regression']
validmind.data_validation.AutoAR Auto AR Automatically identifies the optimal Autoregressive (AR) order for a time series using BIC and AIC criteria.... ['dataset'] {'max_ar_order': {'type': 'int', 'default': 3}} ['time_series_data', 'statsmodels', 'forecasting', 'statistical_test'] ['regression']
validmind.data_validation.AutoMA Auto MA Automatically selects the optimal Moving Average (MA) order for each variable in a time series dataset based on... ['dataset'] {'max_ma_order': {'type': 'int', 'default': 3}} ['time_series_data', 'statsmodels', 'forecasting', 'statistical_test'] ['regression']
validmind.data_validation.AutoStationarity Auto Stationarity Automates Augmented Dickey-Fuller test to assess stationarity across multiple time series in a DataFrame.... ['dataset'] {'max_order': {'type': 'int', 'default': 5}, 'threshold': {'type': 'float', 'default': 0.05}} ['time_series_data', 'statsmodels', 'forecasting', 'statistical_test'] ['regression']
validmind.data_validation.BivariateScatterPlots Bivariate Scatter Plots Generates bivariate scatterplots to visually inspect relationships between pairs of numerical predictor variables... ['dataset'] {} ['tabular_data', 'numerical_data', 'visualization'] ['classification']
validmind.data_validation.BoxPierce Box Pierce Detects autocorrelation in time-series data through the Box-Pierce test to validate model performance.... ['dataset'] {} ['time_series_data', 'forecasting', 'statistical_test', 'statsmodels'] ['regression']
validmind.data_validation.ChiSquaredFeaturesTable Chi Squared Features Table Assesses the statistical association between categorical features and a target variable using the Chi-Squared test.... ['dataset'] {'p_threshold': {'type': '_empty', 'default': 0.05}} ['tabular_data', 'categorical_data', 'statistical_test'] ['classification']
validmind.data_validation.ClassImbalance Class Imbalance Evaluates and quantifies class distribution imbalance in a dataset used by a machine learning model.... ['dataset'] {'min_percent_threshold': {'type': 'int', 'default': 10}} ['tabular_data', 'binary_classification', 'multiclass_classification', 'data_quality'] ['classification']
validmind.data_validation.DatasetDescription Dataset Description Provides comprehensive analysis and statistical summaries of each column in a machine learning model's dataset.... ['dataset'] {} ['tabular_data', 'time_series_data', 'text_data'] ['classification', 'regression', 'text_classification', 'text_summarization']
validmind.data_validation.DatasetSplit Dataset Split Evaluates and visualizes the distribution proportions among training, testing, and validation datasets of an ML... ['datasets'] {} ['tabular_data', 'time_series_data', 'text_data'] ['classification', 'regression', 'text_classification', 'text_summarization']
validmind.data_validation.DescriptiveStatistics Descriptive Statistics Performs a detailed descriptive statistical analysis of both numerical and categorical data within a model's... ['dataset'] {} ['tabular_data', 'time_series_data', 'data_quality'] ['classification', 'regression']
validmind.data_validation.DickeyFullerGLS Dickey Fuller GLS Assesses stationarity in time series data using the Dickey-Fuller GLS test to determine the order of integration.... ['dataset'] {} ['time_series_data', 'forecasting', 'unit_root_test'] ['regression']
validmind.data_validation.Duplicates Duplicates Tests dataset for duplicate entries, ensuring model reliability via data quality verification.... ['dataset'] {'min_threshold': {'type': '_empty', 'default': 1}} ['tabular_data', 'data_quality', 'text_data'] ['classification', 'regression']
validmind.data_validation.EngleGrangerCoint Engle Granger Coint Assesses the degree of co-movement between pairs of time series data using the Engle-Granger cointegration test.... ['dataset'] {'threshold': {'type': 'float', 'default': 0.05}} ['time_series_data', 'statistical_test', 'forecasting'] ['regression']
validmind.data_validation.FeatureTargetCorrelationPlot Feature Target Correlation Plot Visualizes the correlation between input features and the model's target output in a color-coded horizontal bar... ['dataset'] {'fig_height': {'type': '_empty', 'default': 600}} ['tabular_data', 'visualization', 'correlation'] ['classification', 'regression']
validmind.data_validation.HighCardinality High Cardinality Assesses the number of unique values in categorical columns to detect high cardinality and potential overfitting.... ['dataset'] {'num_threshold': {'type': 'int', 'default': 100}, 'percent_threshold': {'type': 'float', 'default': 0.1}, 'threshold_type': {'type': 'str', 'default': 'percent'}} ['tabular_data', 'data_quality', 'categorical_data'] ['classification', 'regression']
validmind.data_validation.HighPearsonCorrelation High Pearson Correlation Identifies highly correlated feature pairs in a dataset suggesting feature redundancy or multicollinearity.... ['dataset'] {'max_threshold': {'type': 'float', 'default': 0.3}, 'top_n_correlations': {'type': 'int', 'default': 10}, 'feature_columns': {'type': 'list', 'default': None}} ['tabular_data', 'data_quality', 'correlation'] ['classification', 'regression']
validmind.data_validation.IQROutliersBarPlot IQR Outliers Bar Plot Visualizes outlier distribution across percentiles in numerical data using the Interquartile Range (IQR) method.... ['dataset'] {'threshold': {'type': 'float', 'default': 1.5}, 'fig_width': {'type': 'int', 'default': 800}} ['tabular_data', 'visualization', 'numerical_data'] ['classification', 'regression']
validmind.data_validation.IQROutliersTable IQR Outliers Table Determines and summarizes outliers in numerical features using the Interquartile Range method.... ['dataset'] {'threshold': {'type': 'float', 'default': 1.5}} ['tabular_data', 'numerical_data'] ['classification', 'regression']
validmind.data_validation.IsolationForestOutliers Isolation Forest Outliers Detects outliers in a dataset using the Isolation Forest algorithm and visualizes results through scatter plots.... ['dataset'] {'random_state': {'type': 'int', 'default': 0}, 'contamination': {'type': 'float', 'default': 0.1}, 'feature_columns': {'type': 'list', 'default': None}} ['tabular_data', 'anomaly_detection'] ['classification']
validmind.data_validation.JarqueBera Jarque Bera Assesses normality of dataset features in an ML model using the Jarque-Bera test.... ['dataset'] {} ['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] ['classification', 'regression']
validmind.data_validation.KPSS KPSS Assesses the stationarity of time-series data in a machine learning model using the KPSS unit root test.... ['dataset'] {} ['time_series_data', 'stationarity', 'unit_root_test', 'statsmodels'] ['data_validation']
validmind.data_validation.LJungBox L Jung Box Assesses autocorrelations in dataset features by performing a Ljung-Box test on each feature.... ['dataset'] {} ['time_series_data', 'forecasting', 'statistical_test', 'statsmodels'] ['regression']
validmind.data_validation.LaggedCorrelationHeatmap Lagged Correlation Heatmap Assesses and visualizes correlation between target variable and lagged independent variables in a time-series... ['dataset'] {'num_lags': {'type': 'int', 'default': 10}} ['time_series_data', 'visualization'] ['regression']
validmind.data_validation.MissingValues Missing Values Evaluates dataset quality by ensuring missing value ratio across all features does not exceed a set threshold.... ['dataset'] {'min_threshold': {'type': 'int', 'default': 1}} ['tabular_data', 'data_quality'] ['classification', 'regression']
validmind.data_validation.MissingValuesBarPlot Missing Values Bar Plot Assesses the percentage and distribution of missing values in the dataset via a bar plot, with emphasis on... ['dataset'] {'threshold': {'type': 'int', 'default': 80}, 'fig_height': {'type': 'int', 'default': 600}} ['tabular_data', 'data_quality', 'visualization'] ['classification', 'regression']
validmind.data_validation.MutualInformation Mutual Information Calculates mutual information scores between features and target variable to evaluate feature relevance.... ['dataset'] {'min_threshold': {'type': 'float', 'default': 0.01}, 'task': {'type': 'str', 'default': 'classification'}} ['feature_selection', 'data_analysis'] ['classification', 'regression']
validmind.data_validation.PearsonCorrelationMatrix Pearson Correlation Matrix Evaluates linear dependency between numerical variables in a dataset via a Pearson Correlation coefficient heat map.... ['dataset'] {} ['tabular_data', 'numerical_data', 'correlation'] ['classification', 'regression']
validmind.data_validation.PhillipsPerronArch Phillips Perron Arch Assesses the stationarity of time series data in each feature of the ML model using the Phillips-Perron test.... ['dataset'] {} ['time_series_data', 'forecasting', 'statistical_test', 'unit_root_test'] ['regression']
validmind.data_validation.ProtectedClassesDescription Protected Classes Description Visualizes the distribution of protected classes in the dataset relative to the target variable... ['dataset'] {'protected_classes': {'type': '_empty', 'default': None}} ['bias_and_fairness', 'descriptive_statistics'] ['classification', 'regression']
validmind.data_validation.RollingStatsPlot Rolling Stats Plot Evaluates the stationarity of time series data by plotting its rolling mean and standard deviation over a specified... ['dataset'] {'window_size': {'type': 'int', 'default': 12}} ['time_series_data', 'visualization', 'stationarity'] ['regression']
validmind.data_validation.RunsTest Runs Test Executes Runs Test on ML model to detect non-random patterns in output data sequence.... ['dataset'] {} ['tabular_data', 'statistical_test', 'statsmodels'] ['classification', 'regression']
validmind.data_validation.ScatterPlot Scatter Plot Assesses visual relationships, patterns, and outliers among features in a dataset through scatter plot matrices.... ['dataset'] {} ['tabular_data', 'visualization'] ['classification', 'regression']
validmind.data_validation.ScoreBandDefaultRates Score Band Default Rates Analyzes default rates and population distribution across credit score bands.... ['dataset', 'model'] {'score_column': {'type': 'str', 'default': 'score'}, 'score_bands': {'type': 'list', 'default': None}} ['visualization', 'credit_risk', 'scorecard'] ['classification']
validmind.data_validation.SeasonalDecompose Seasonal Decompose Assesses patterns and seasonality in a time series dataset by decomposing its features into foundational components.... ['dataset'] {'seasonal_model': {'type': 'str', 'default': 'additive'}} ['time_series_data', 'seasonality', 'statsmodels'] ['regression']
validmind.data_validation.ShapiroWilk Shapiro Wilk Evaluates feature-wise normality of training data using the Shapiro-Wilk test.... ['dataset'] {} ['tabular_data', 'data_distribution', 'statistical_test'] ['classification', 'regression']
validmind.data_validation.Skewness Skewness Evaluates the skewness of numerical data in a dataset to check against a defined threshold, aiming to ensure data... ['dataset'] {'max_threshold': {'type': '_empty', 'default': 1}} ['data_quality', 'tabular_data'] ['classification', 'regression']
validmind.data_validation.SpreadPlot Spread Plot Assesses potential correlations between pairs of time series variables through visualization to enhance... ['dataset'] {} ['time_series_data', 'visualization'] ['regression']
validmind.data_validation.TabularCategoricalBarPlots Tabular Categorical Bar Plots Generates and visualizes bar plots for each category in categorical features to evaluate the dataset's composition.... ['dataset'] {} ['tabular_data', 'visualization'] ['classification', 'regression']
validmind.data_validation.TabularDateTimeHistograms Tabular Date Time Histograms Generates histograms to provide graphical insight into the distribution of time intervals in a model's datetime... ['dataset'] {} ['time_series_data', 'visualization'] ['classification', 'regression']
validmind.data_validation.TabularDescriptionTables Tabular Description Tables Summarizes key descriptive statistics for numerical, categorical, and datetime variables in a dataset.... ['dataset'] {} ['tabular_data'] ['classification', 'regression']
validmind.data_validation.TabularNumericalHistograms Tabular Numerical Histograms Generates histograms for each numerical feature in a dataset to provide visual insights into data distribution and... ['dataset'] {} ['tabular_data', 'visualization'] ['classification', 'regression']
validmind.data_validation.TargetRateBarPlots Target Rate Bar Plots Generates bar plots visualizing the default rates of categorical features for a classification machine learning... ['dataset'] {} ['tabular_data', 'visualization', 'categorical_data'] ['classification']
validmind.data_validation.TimeSeriesDescription Time Series Description Generates a detailed analysis for the provided time series dataset, summarizing key statistics to identify trends,... ['dataset'] {} ['time_series_data', 'analysis'] ['regression']
validmind.data_validation.TimeSeriesDescriptiveStatistics Time Series Descriptive Statistics Evaluates the descriptive statistics of a time series dataset to identify trends, patterns, and data quality issues.... ['dataset'] {} ['time_series_data', 'analysis'] ['regression']
validmind.data_validation.TimeSeriesFrequency Time Series Frequency Evaluates consistency of time series data frequency and generates a frequency plot.... ['dataset'] {} ['time_series_data'] ['regression']
validmind.data_validation.TimeSeriesHistogram Time Series Histogram Visualizes distribution of time-series data using histograms and Kernel Density Estimation (KDE) lines.... ['dataset'] {'nbins': {'type': '_empty', 'default': 30}} ['data_validation', 'visualization', 'time_series_data'] ['regression', 'time_series_forecasting']
validmind.data_validation.TimeSeriesLinePlot Time Series Line Plot Generates and analyses time-series data through line plots revealing trends, patterns, anomalies over time.... ['dataset'] {} ['time_series_data', 'visualization'] ['regression']
validmind.data_validation.TimeSeriesMissingValues Time Series Missing Values Validates time-series data quality by confirming the count of missing values is below a certain threshold.... ['dataset'] {'min_threshold': {'type': 'int', 'default': 1}} ['time_series_data'] ['regression']
validmind.data_validation.TimeSeriesOutliers Time Series Outliers Identifies and visualizes outliers in time-series data using the z-score method.... ['dataset'] {'zscore_threshold': {'type': 'int', 'default': 3}} ['time_series_data'] ['regression']
validmind.data_validation.TooManyZeroValues Too Many Zero Values Identifies numerical columns in a dataset that contain an excessive number of zero values, defined by a threshold... ['dataset'] {'max_percent_threshold': {'type': 'float', 'default': 0.03}} ['tabular_data'] ['regression', 'classification']
validmind.data_validation.UniqueRows Unique Rows Verifies the diversity of the dataset by ensuring that the count of unique rows exceeds a prescribed threshold.... ['dataset'] {'min_percent_threshold': {'type': 'float', 'default': 1}} ['tabular_data'] ['regression', 'classification']
validmind.data_validation.WOEBinPlots WOE Bin Plots Generates visualizations of Weight of Evidence (WoE) and Information Value (IV) for understanding predictive power... ['dataset'] {'breaks_adj': {'type': 'list', 'default': None}, 'fig_height': {'type': 'int', 'default': 600}, 'fig_width': {'type': 'int', 'default': 500}} ['tabular_data', 'visualization', 'categorical_data'] ['classification']
validmind.data_validation.WOEBinTable WOE Bin Table Assesses the Weight of Evidence (WoE) and Information Value (IV) of each feature to evaluate its predictive power... ['dataset'] {'breaks_adj': {'type': 'list', 'default': None}} ['tabular_data', 'categorical_data'] ['classification']
validmind.data_validation.ZivotAndrewsArch Zivot Andrews Arch Evaluates the order of integration and stationarity of time series data using the Zivot-Andrews unit root test.... ['dataset'] {} ['time_series_data', 'stationarity', 'unit_root_test'] ['regression']
validmind.data_validation.nlp.CommonWords Common Words Assesses the most frequent non-stopwords in a text column for identifying prevalent language patterns.... ['dataset'] {} ['nlp', 'text_data', 'visualization', 'frequency_analysis'] ['text_classification', 'text_summarization']
validmind.data_validation.nlp.Hashtags Hashtags Assesses hashtag frequency in a text column, highlighting usage trends and potential dataset bias or spam.... ['dataset'] {'top_hashtags': {'type': 'int', 'default': 25}} ['nlp', 'text_data', 'visualization', 'frequency_analysis'] ['text_classification', 'text_summarization']
validmind.data_validation.nlp.LanguageDetection Language Detection Assesses the diversity of languages in a textual dataset by detecting and visualizing the distribution of languages.... ['dataset'] {} ['nlp', 'text_data', 'visualization'] ['text_classification', 'text_summarization']
validmind.data_validation.nlp.Mentions Mentions Calculates and visualizes frequencies of '@' prefixed mentions in a text-based dataset for NLP model analysis.... ['dataset'] {'top_mentions': {'type': 'int', 'default': 25}} ['nlp', 'text_data', 'visualization', 'frequency_analysis'] ['text_classification', 'text_summarization']
validmind.data_validation.nlp.PolarityAndSubjectivity Polarity And Subjectivity Analyzes the polarity and subjectivity of text data within a given dataset to visualize the sentiment distribution.... ['dataset'] {'threshold_subjectivity': {'type': '_empty', 'default': 0.5}, 'threshold_polarity': {'type': '_empty', 'default': 0}} ['nlp', 'text_data', 'data_validation'] ['nlp']
validmind.data_validation.nlp.Punctuations Punctuations Analyzes and visualizes the frequency distribution of punctuation usage in a given text dataset.... ['dataset'] {'count_mode': {'type': '_empty', 'default': 'token'}} ['nlp', 'text_data', 'visualization', 'frequency_analysis'] ['text_classification', 'text_summarization', 'nlp']
validmind.data_validation.nlp.Sentiment Sentiment Analyzes the sentiment of text data within a dataset using the VADER sentiment analysis tool.... ['dataset'] {} ['nlp', 'text_data', 'data_validation'] ['nlp']
validmind.data_validation.nlp.StopWords Stop Words Evaluates and visualizes the frequency of English stop words in a text dataset against a defined threshold.... ['dataset'] {'min_percent_threshold': {'type': 'float', 'default': 0.5}, 'num_words': {'type': 'int', 'default': 25}} ['nlp', 'text_data', 'frequency_analysis', 'visualization'] ['text_classification', 'text_summarization']
validmind.data_validation.nlp.TextDescription Text Description Conducts comprehensive textual analysis on a dataset using NLTK to evaluate various parameters and generate... ['dataset'] {'unwanted_tokens': {'type': 'set', 'default': {"s'", "'s", ' ', 'mr', "''", 'dollar', 'dr', 'mrs', '``', 's', 'us', 'ms'}}, 'lang': {'type': 'str', 'default': 'english'}} ['nlp', 'text_data', 'visualization'] ['text_classification', 'text_summarization']
validmind.data_validation.nlp.Toxicity Toxicity Assesses the toxicity of text data within a dataset to visualize the distribution of toxicity scores.... ['dataset'] {} ['nlp', 'text_data', 'data_validation'] ['nlp']
validmind.model_validation.BertScore Bert Score Assesses the quality of machine-generated text using BERTScore metrics and visualizes results through histograms... ['dataset', 'model'] {'evaluation_model': {'type': '_empty', 'default': 'distilbert-base-uncased'}} ['nlp', 'text_data', 'visualization'] ['text_classification', 'text_summarization']
validmind.model_validation.BleuScore Bleu Score Evaluates the quality of machine-generated text using BLEU metrics and visualizes the results through histograms... ['dataset', 'model'] {} ['nlp', 'text_data', 'visualization'] ['text_classification', 'text_summarization']
validmind.model_validation.ClusterSizeDistribution Cluster Size Distribution Assesses the performance of clustering models by comparing the distribution of cluster sizes in model predictions... ['dataset', 'model'] {} ['sklearn', 'model_performance'] ['clustering']
validmind.model_validation.ContextualRecall Contextual Recall Evaluates a Natural Language Generation model's ability to generate contextually relevant and factually correct... ['dataset', 'model'] {} ['nlp', 'text_data', 'visualization'] ['text_classification', 'text_summarization']
validmind.model_validation.FeaturesAUC Features AUC Evaluates the discriminatory power of each individual feature within a binary classification model by calculating... ['dataset'] {'fontsize': {'type': 'int', 'default': 12}, 'figure_height': {'type': 'int', 'default': 500}} ['feature_importance', 'AUC', 'visualization'] ['classification']
validmind.model_validation.MeteorScore Meteor Score Assesses the quality of machine-generated translations by comparing them to human-produced references using the... ['dataset', 'model'] {} ['nlp', 'text_data', 'visualization'] ['text_classification', 'text_summarization']
validmind.model_validation.ModelMetadata Model Metadata Compare metadata of different models and generate a summary table with the results.... ['model'] {} ['model_training', 'metadata'] ['regression', 'time_series_forecasting']
validmind.model_validation.ModelPredictionResiduals Model Prediction Residuals Assesses normality and behavior of residuals in regression models through visualization and statistical tests.... ['dataset', 'model'] {'nbins': {'type': '_empty', 'default': 100}, 'p_value_threshold': {'type': '_empty', 'default': 0.05}, 'start_date': {'type': '_empty', 'default': None}, 'end_date': {'type': '_empty', 'default': None}} ['regression'] ['residual_analysis', 'visualization']
validmind.model_validation.RegardScore Regard Score Assesses the sentiment and potential biases in text generated by NLP models by computing and visualizing regard... ['dataset', 'model'] {} ['nlp', 'text_data', 'visualization'] ['text_classification', 'text_summarization']
validmind.model_validation.RegressionResidualsPlot Regression Residuals Plot Evaluates regression model performance using residual distribution and actual vs. predicted plots.... ['model', 'dataset'] {'bin_size': {'type': 'float', 'default': 0.1}} ['model_performance', 'visualization'] ['regression']
validmind.model_validation.RougeScore Rouge Score Assesses the quality of machine-generated text using ROUGE metrics and visualizes the results to provide... ['dataset', 'model'] {'metric': {'type': '_empty', 'default': 'rouge-1'}} ['nlp', 'text_data', 'visualization'] ['text_classification', 'text_summarization']
validmind.model_validation.TimeSeriesPredictionWithCI Time Series Prediction With CI Assesses predictive accuracy and uncertainty in time series models, highlighting breaches beyond confidence... ['dataset', 'model'] {'confidence': {'type': '_empty', 'default': 0.95}} ['model_predictions', 'visualization'] ['regression', 'time_series_forecasting']
validmind.model_validation.TimeSeriesPredictionsPlot Time Series Predictions Plot Plot actual vs predicted values for time series data and generate a visual comparison for the model.... ['dataset', 'model'] {} ['model_predictions', 'visualization'] ['regression', 'time_series_forecasting']
validmind.model_validation.TimeSeriesR2SquareBySegments Time Series R2 Square By Segments Evaluates the R-Squared values of regression models over specified time segments in time series data to assess... ['dataset', 'model'] {'segments': {'type': '_empty', 'default': None}} ['model_performance', 'sklearn'] ['regression', 'time_series_forecasting']
validmind.model_validation.TokenDisparity Token Disparity Evaluates the token disparity between reference and generated texts, visualizing the results through histograms and... ['dataset', 'model'] {} ['nlp', 'text_data', 'visualization'] ['text_classification', 'text_summarization']
validmind.model_validation.ToxicityScore Toxicity Score Assesses the toxicity levels of texts generated by NLP models to identify and mitigate harmful or offensive content.... ['dataset', 'model'] {} ['nlp', 'text_data', 'visualization'] ['text_classification', 'text_summarization']
validmind.model_validation.embeddings.ClusterDistribution Cluster Distribution Assesses the distribution of text embeddings across clusters produced by a model using KMeans clustering.... ['model', 'dataset'] {'num_clusters': {'type': 'int', 'default': 5}} ['llm', 'text_data', 'embeddings', 'visualization'] ['feature_extraction']
validmind.model_validation.embeddings.CosineSimilarityComparison Cosine Similarity Comparison Assesses the similarity between embeddings generated by different models using Cosine Similarity, providing both... ['dataset', 'models'] {} ['visualization', 'dimensionality_reduction', 'embeddings'] ['text_qa', 'text_generation', 'text_summarization']
validmind.model_validation.embeddings.CosineSimilarityDistribution Cosine Similarity Distribution Assesses the similarity between predicted text embeddings from a model using a Cosine Similarity distribution... ['dataset', 'model'] {} ['llm', 'text_data', 'embeddings', 'visualization'] ['feature_extraction']
validmind.model_validation.embeddings.CosineSimilarityHeatmap Cosine Similarity Heatmap Generates an interactive heatmap to visualize the cosine similarities among embeddings derived from a given model.... ['dataset', 'model'] {'title': {'type': '_empty', 'default': 'Cosine Similarity Matrix'}, 'color': {'type': '_empty', 'default': 'Cosine Similarity'}, 'xaxis_title': {'type': '_empty', 'default': 'Index'}, 'yaxis_title': {'type': '_empty', 'default': 'Index'}, 'color_scale': {'type': '_empty', 'default': 'Blues'}} ['visualization', 'dimensionality_reduction', 'embeddings'] ['text_qa', 'text_generation', 'text_summarization']
validmind.model_validation.embeddings.DescriptiveAnalytics Descriptive Analytics Evaluates statistical properties of text embeddings in an ML model via mean, median, and standard deviation... ['dataset', 'model'] {} ['llm', 'text_data', 'embeddings', 'visualization'] ['feature_extraction']
validmind.model_validation.embeddings.EmbeddingsVisualization2D Embeddings Visualization2 D Visualizes 2D representation of text embeddings generated by a model using t-SNE technique.... ['model', 'dataset'] {'cluster_column': {'type': None, 'default': None}, 'perplexity': {'type': 'int', 'default': 30}} ['llm', 'text_data', 'embeddings', 'visualization'] ['feature_extraction']
validmind.model_validation.embeddings.EuclideanDistanceComparison Euclidean Distance Comparison Assesses and visualizes the dissimilarity between model embeddings using Euclidean distance, providing insights... ['dataset', 'models'] {} ['visualization', 'dimensionality_reduction', 'embeddings'] ['text_qa', 'text_generation', 'text_summarization']
validmind.model_validation.embeddings.EuclideanDistanceHeatmap Euclidean Distance Heatmap Generates an interactive heatmap to visualize the Euclidean distances among embeddings derived from a given model.... ['dataset', 'model'] {'title': {'type': '_empty', 'default': 'Euclidean Distance Matrix'}, 'color': {'type': '_empty', 'default': 'Euclidean Distance'}, 'xaxis_title': {'type': '_empty', 'default': 'Index'}, 'yaxis_title': {'type': '_empty', 'default': 'Index'}, 'color_scale': {'type': '_empty', 'default': 'Blues'}} ['visualization', 'dimensionality_reduction', 'embeddings'] ['text_qa', 'text_generation', 'text_summarization']
validmind.model_validation.embeddings.PCAComponentsPairwisePlots PCA Components Pairwise Plots Generates scatter plots for pairwise combinations of principal component analysis (PCA) components of model... ['dataset', 'model'] {'n_components': {'type': '_empty', 'default': 3}} ['visualization', 'dimensionality_reduction', 'embeddings'] ['text_qa', 'text_generation', 'text_summarization']
validmind.model_validation.embeddings.StabilityAnalysisKeyword Stability Analysis Keyword Evaluates robustness of embedding models to keyword swaps in the test dataset.... ['dataset', 'model'] {'keyword_dict': {'type': None, 'default': None}, 'mean_similarity_threshold': {'type': 'float', 'default': 0.7}} ['llm', 'text_data', 'embeddings', 'visualization'] ['feature_extraction']
validmind.model_validation.embeddings.StabilityAnalysisRandomNoise Stability Analysis Random Noise Assesses the robustness of text embeddings models to random noise introduced via text perturbations.... ['dataset', 'model'] {'probability': {'type': 'float', 'default': 0.02}, 'mean_similarity_threshold': {'type': 'float', 'default': 0.7}} ['llm', 'text_data', 'embeddings', 'visualization'] ['feature_extraction']
validmind.model_validation.embeddings.StabilityAnalysisSynonyms Stability Analysis Synonyms Evaluates the stability of text embeddings models when words in test data are replaced by their synonyms randomly.... ['dataset', 'model'] {'probability': {'type': 'float', 'default': 0.02}, 'mean_similarity_threshold': {'type': 'float', 'default': 0.7}} ['llm', 'text_data', 'embeddings', 'visualization'] ['feature_extraction']
validmind.model_validation.embeddings.StabilityAnalysisTranslation Stability Analysis Translation Evaluates robustness of text embeddings models to noise introduced by translating the original text to another... ['dataset', 'model'] {'source_lang': {'type': 'str', 'default': 'en'}, 'target_lang': {'type': 'str', 'default': 'fr'}, 'mean_similarity_threshold': {'type': 'float', 'default': 0.7}} ['llm', 'text_data', 'embeddings', 'visualization'] ['feature_extraction']
validmind.model_validation.embeddings.TSNEComponentsPairwisePlots TSNE Components Pairwise Plots Creates scatter plots for pairwise combinations of t-SNE components to visualize embeddings and highlight potential... ['dataset', 'model'] {'n_components': {'type': '_empty', 'default': 2}, 'perplexity': {'type': '_empty', 'default': 30}, 'title': {'type': '_empty', 'default': 't-SNE'}} ['visualization', 'dimensionality_reduction', 'embeddings'] ['text_qa', 'text_generation', 'text_summarization']
validmind.model_validation.ragas.AnswerCorrectness Answer Correctness Evaluates the correctness of answers in a dataset with respect to the provided ground... ['dataset'] {'user_input_column': {'type': '_empty', 'default': 'user_input'}, 'response_column': {'type': '_empty', 'default': 'response'}, 'reference_column': {'type': '_empty', 'default': 'reference'}} ['ragas', 'llm'] ['text_qa', 'text_generation', 'text_summarization']
validmind.model_validation.ragas.AspectCritic Aspect Critic Evaluates generations against the following aspects: harmfulness, maliciousness,... ['dataset'] {'user_input_column': {'type': '_empty', 'default': 'user_input'}, 'response_column': {'type': '_empty', 'default': 'response'}, 'retrieved_contexts_column': {'type': '_empty', 'default': None}, 'aspects': {'type': 'list', 'default': ['coherence', 'conciseness', 'correctness', 'harmfulness', 'maliciousness']}, 'additional_aspects': {'type': 'list', 'default': None}} ['ragas', 'llm', 'qualitative'] ['text_summarization', 'text_generation', 'text_qa']
validmind.model_validation.ragas.ContextEntityRecall Context Entity Recall Evaluates the context entity recall for dataset entries and visualizes the results.... ['dataset'] {'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'reference_column': {'type': 'str', 'default': 'reference'}} ['ragas', 'llm', 'retrieval_performance'] ['text_qa', 'text_generation', 'text_summarization']
validmind.model_validation.ragas.ContextPrecision Context Precision Context Precision is a metric that evaluates whether all of the ground-truth... ['dataset'] {'user_input_column': {'type': 'str', 'default': 'user_input'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'reference_column': {'type': 'str', 'default': 'reference'}} ['ragas', 'llm', 'retrieval_performance'] ['text_qa', 'text_generation', 'text_summarization', 'text_classification']
validmind.model_validation.ragas.ContextPrecisionWithoutReference Context Precision Without Reference Context Precision Without Reference is a metric used to evaluate the relevance of... ['dataset'] {'user_input_column': {'type': 'str', 'default': 'user_input'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'response_column': {'type': 'str', 'default': 'response'}} ['ragas', 'llm', 'retrieval_performance'] ['text_qa', 'text_generation', 'text_summarization', 'text_classification']
validmind.model_validation.ragas.ContextRecall Context Recall Context recall measures the extent to which the retrieved context aligns with the... ['dataset'] {'user_input_column': {'type': 'str', 'default': 'user_input'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'reference_column': {'type': 'str', 'default': 'reference'}} ['ragas', 'llm', 'retrieval_performance'] ['text_qa', 'text_generation', 'text_summarization', 'text_classification']
validmind.model_validation.ragas.Faithfulness Faithfulness Evaluates the faithfulness of the generated answers with respect to retrieved contexts.... ['dataset'] {'user_input_column': {'type': '_empty', 'default': 'user_input'}, 'response_column': {'type': '_empty', 'default': 'response'}, 'retrieved_contexts_column': {'type': '_empty', 'default': 'retrieved_contexts'}} ['ragas', 'llm', 'rag_performance'] ['text_qa', 'text_generation', 'text_summarization']
validmind.model_validation.ragas.NoiseSensitivity Noise Sensitivity Assesses the sensitivity of a Large Language Model (LLM) to noise in retrieved context by measuring how often it... ['dataset'] {'response_column': {'type': '_empty', 'default': 'response'}, 'retrieved_contexts_column': {'type': '_empty', 'default': 'retrieved_contexts'}, 'reference_column': {'type': '_empty', 'default': 'reference'}, 'focus': {'type': '_empty', 'default': 'relevant'}, 'user_input_column': {'type': '_empty', 'default': 'user_input'}} ['ragas', 'llm', 'rag_performance'] ['text_qa', 'text_generation', 'text_summarization']
validmind.model_validation.ragas.ResponseRelevancy Response Relevancy Assesses how pertinent the generated answer is to the given prompt.... ['dataset'] {'user_input_column': {'type': '_empty', 'default': 'user_input'}, 'retrieved_contexts_column': {'type': '_empty', 'default': None}, 'response_column': {'type': '_empty', 'default': 'response'}} ['ragas', 'llm', 'rag_performance'] ['text_qa', 'text_generation', 'text_summarization']
validmind.model_validation.ragas.SemanticSimilarity Semantic Similarity Calculates the semantic similarity between generated responses and ground truths... ['dataset'] {'response_column': {'type': '_empty', 'default': 'response'}, 'reference_column': {'type': '_empty', 'default': 'reference'}} ['ragas', 'llm'] ['text_qa', 'text_generation', 'text_summarization']
validmind.model_validation.sklearn.AdjustedMutualInformation Adjusted Mutual Information Evaluates clustering model performance by measuring mutual information between true and predicted labels, adjusting... ['model', 'dataset'] {} ['sklearn', 'model_performance', 'clustering'] ['clustering']
validmind.model_validation.sklearn.AdjustedRandIndex Adjusted Rand Index Measures the similarity between two data clusters using the Adjusted Rand Index (ARI) metric in clustering machine... ['model', 'dataset'] {} ['sklearn', 'model_performance', 'clustering'] ['clustering']
validmind.model_validation.sklearn.CalibrationCurve Calibration Curve Evaluates the calibration of probability estimates by comparing predicted probabilities against observed... ['model', 'dataset'] {'n_bins': {'type': 'int', 'default': 10}} ['sklearn', 'model_performance', 'classification'] ['classification']
validmind.model_validation.sklearn.ClassifierPerformance Classifier Performance Evaluates performance of binary or multiclass classification models using precision, recall, F1-Score, accuracy,... ['dataset', 'model'] {'average': {'type': 'str', 'default': 'macro'}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ClassifierThresholdOptimization Classifier Threshold Optimization Analyzes and visualizes different threshold optimization methods for binary classification models.... ['dataset', 'model'] {'methods': {'type': None, 'default': None}, 'target_recall': {'type': None, 'default': None}} ['model_validation', 'threshold_optimization', 'classification_metrics'] ['classification']
validmind.model_validation.sklearn.ClusterCosineSimilarity Cluster Cosine Similarity Measures the intra-cluster similarity of a clustering model using cosine similarity.... ['model', 'dataset'] {} ['sklearn', 'model_performance', 'clustering'] ['clustering']
validmind.model_validation.sklearn.ClusterPerformanceMetrics Cluster Performance Metrics Evaluates the performance of clustering machine learning models using multiple established metrics.... ['model', 'dataset'] {} ['sklearn', 'model_performance', 'clustering'] ['clustering']
validmind.model_validation.sklearn.CompletenessScore Completeness Score Evaluates a clustering model's capacity to categorize instances from a single class into the same cluster.... ['model', 'dataset'] {} ['sklearn', 'model_performance', 'clustering'] ['clustering']
validmind.model_validation.sklearn.ConfusionMatrix Confusion Matrix Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... ['dataset', 'model'] {'threshold': {'type': 'float', 'default': 0.5}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.FeatureImportance Feature Importance Compute feature importance scores for a given model and generate a summary table... ['dataset', 'model'] {'num_features': {'type': 'int', 'default': 3}} ['model_explainability', 'sklearn'] ['regression', 'time_series_forecasting']
validmind.model_validation.sklearn.FowlkesMallowsScore Fowlkes Mallows Score Evaluates the similarity between predicted and actual cluster assignments in a model using the Fowlkes-Mallows... ['dataset', 'model'] {} ['sklearn', 'model_performance'] ['clustering']
validmind.model_validation.sklearn.HomogeneityScore Homogeneity Score Assesses clustering homogeneity by comparing true and predicted labels, scoring from 0 (heterogeneous) to 1... ['dataset', 'model'] {} ['sklearn', 'model_performance'] ['clustering']
validmind.model_validation.sklearn.HyperParametersTuning Hyper Parameters Tuning Performs exhaustive grid search over specified parameter ranges to find optimal model configurations... ['model', 'dataset'] {'param_grid': {'type': 'dict', 'default': None}, 'scoring': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}, 'fit_params': {'type': 'dict', 'default': None}} ['sklearn', 'model_performance'] ['clustering', 'classification']
validmind.model_validation.sklearn.KMeansClustersOptimization K Means Clusters Optimization Optimizes the number of clusters in K-means models using Elbow and Silhouette methods.... ['model', 'dataset'] {'n_clusters': {'type': None, 'default': None}} ['sklearn', 'model_performance', 'kmeans'] ['clustering']
validmind.model_validation.sklearn.MinimumAccuracy Minimum Accuracy Checks if the model's prediction accuracy meets or surpasses a specified threshold.... ['dataset', 'model'] {'min_threshold': {'type': 'float', 'default': 0.7}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.MinimumF1Score Minimum F1 Score Assesses if the model's F1 score on the validation set meets a predefined minimum threshold, ensuring balanced... ['dataset', 'model'] {'min_threshold': {'type': 'float', 'default': 0.5}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.MinimumROCAUCScore Minimum ROCAUC Score Validates model by checking if the ROC AUC score meets or surpasses a specified threshold.... ['dataset', 'model'] {'min_threshold': {'type': 'float', 'default': 0.5}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ModelParameters Model Parameters Extracts and displays model parameters in a structured format for transparency and reproducibility.... ['model'] {'model_params': {'type': '_empty', 'default': None}} ['model_training', 'metadata'] ['classification', 'regression']
validmind.model_validation.sklearn.ModelsPerformanceComparison Models Performance Comparison Evaluates and compares the performance of multiple Machine Learning models using various metrics like accuracy,... ['dataset', 'models'] {} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'model_comparison'] ['classification', 'text_classification']
validmind.model_validation.sklearn.OverfitDiagnosis Overfit Diagnosis Assesses potential overfitting in a model's predictions, identifying regions where performance between training and... ['model', 'datasets'] {'metric': {'type': 'str', 'default': None}, 'cut_off_threshold': {'type': 'float', 'default': 0.04}} ['sklearn', 'binary_classification', 'multiclass_classification', 'linear_regression', 'model_diagnosis'] ['classification', 'regression']
validmind.model_validation.sklearn.PermutationFeatureImportance Permutation Feature Importance Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... ['model', 'dataset'] {'fontsize': {'type': None, 'default': None}, 'figure_height': {'type': None, 'default': None}} ['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.PopulationStabilityIndex Population Stability Index Assesses the Population Stability Index (PSI) to quantify the stability of an ML model's predictions across... ['datasets', 'model'] {'num_bins': {'type': 'int', 'default': 10}, 'mode': {'type': 'str', 'default': 'fixed'}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.PrecisionRecallCurve Precision Recall Curve Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... ['model', 'dataset'] {} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ROCCurve ROC Curve Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... ['model', 'dataset'] {} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.RegressionErrors Regression Errors Assesses the performance and error distribution of a regression model using various error metrics.... ['model', 'dataset'] {} ['sklearn', 'model_performance'] ['regression', 'classification']
validmind.model_validation.sklearn.RegressionErrorsComparison Regression Errors Comparison Assesses multiple regression error metrics to compare model performance across different datasets, emphasizing... ['datasets', 'models'] {} ['model_performance', 'sklearn'] ['regression', 'time_series_forecasting']
validmind.model_validation.sklearn.RegressionPerformance Regression Performance Evaluates the performance of a regression model using five different metrics: MAE, MSE, RMSE, MAPE, and MBD.... ['model', 'dataset'] {} ['sklearn', 'model_performance'] ['regression']
validmind.model_validation.sklearn.RegressionR2Square Regression R2 Square Assesses the overall goodness-of-fit of a regression model by evaluating R-squared (R2) and Adjusted R-squared (Adj... ['dataset', 'model'] {} ['sklearn', 'model_performance'] ['regression']
validmind.model_validation.sklearn.RegressionR2SquareComparison Regression R2 Square Comparison Compares R-Squared and Adjusted R-Squared values for different regression models across multiple datasets to assess... ['datasets', 'models'] {} ['model_performance', 'sklearn'] ['regression', 'time_series_forecasting']
validmind.model_validation.sklearn.RobustnessDiagnosis Robustness Diagnosis Assesses the robustness of a machine learning model by evaluating performance decay under noisy conditions.... ['datasets', 'model'] {'metric': {'type': 'str', 'default': None}, 'scaling_factor_std_dev_list': {'type': None, 'default': [0.1, 0.2, 0.3, 0.4, 0.5]}, 'performance_decay_threshold': {'type': 'float', 'default': 0.05}} ['sklearn', 'model_diagnosis', 'visualization'] ['classification', 'regression']
validmind.model_validation.sklearn.SHAPGlobalImportance SHAP Global Importance Evaluates and visualizes global feature importance using SHAP values for model explanation and risk identification.... ['model', 'dataset'] {'kernel_explainer_samples': {'type': 'int', 'default': 10}, 'tree_or_linear_explainer_samples': {'type': 'int', 'default': 200}, 'class_of_interest': {'type': None, 'default': None}} ['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ScoreProbabilityAlignment Score Probability Alignment Analyzes the alignment between credit scores and predicted probabilities.... ['model', 'dataset'] {'score_column': {'type': 'str', 'default': 'score'}, 'n_bins': {'type': 'int', 'default': 10}} ['visualization', 'credit_risk', 'calibration'] ['classification']
validmind.model_validation.sklearn.SilhouettePlot Silhouette Plot Calculates and visualizes Silhouette Score, assessing the degree of data point suitability to its cluster in ML... ['model', 'dataset'] {} ['sklearn', 'model_performance'] ['clustering']
validmind.model_validation.sklearn.TrainingTestDegradation Training Test Degradation Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... ['datasets', 'model'] {'max_threshold': {'type': 'float', 'default': 0.1}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.VMeasure V Measure Evaluates homogeneity and completeness of a clustering model using the V Measure Score.... ['dataset', 'model'] {} ['sklearn', 'model_performance'] ['clustering']
validmind.model_validation.sklearn.WeakspotsDiagnosis Weakspots Diagnosis Identifies and visualizes weak spots in a machine learning model's performance across various sections of the... ['datasets', 'model'] {'features_columns': {'type': None, 'default': None}, 'metrics': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_diagnosis', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.statsmodels.AutoARIMA Auto ARIMA Evaluates ARIMA models for time-series forecasting, ranking them using Bayesian and Akaike Information Criteria.... ['model', 'dataset'] {} ['time_series_data', 'forecasting', 'model_selection', 'statsmodels'] ['regression']
validmind.model_validation.statsmodels.CumulativePredictionProbabilities Cumulative Prediction Probabilities Visualizes cumulative probabilities of positive and negative classes for both training and testing in classification models.... ['dataset', 'model'] {'title': {'type': '_empty', 'default': 'Cumulative Probabilities'}} ['visualization', 'credit_risk'] ['classification']
validmind.model_validation.statsmodels.DurbinWatsonTest Durbin Watson Test Assesses autocorrelation in time series data features using the Durbin-Watson statistic.... ['dataset', 'model'] {'threshold': {'type': '_empty', 'default': [1.5, 2.5]}} ['time_series_data', 'forecasting', 'statistical_test', 'statsmodels'] ['regression']
validmind.model_validation.statsmodels.GINITable GINI Table Evaluates classification model performance using AUC, GINI, and KS metrics for training and test datasets.... ['dataset', 'model'] {} ['model_performance'] ['classification']
validmind.model_validation.statsmodels.KolmogorovSmirnov Kolmogorov Smirnov Assesses whether each feature in the dataset aligns with a normal distribution using the Kolmogorov-Smirnov test.... ['model', 'dataset'] {'dist': {'type': 'str', 'default': 'norm'}} ['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] ['classification', 'regression']
validmind.model_validation.statsmodels.Lilliefors Lilliefors Assesses the normality of feature distributions in an ML model's training dataset using the Lilliefors test.... ['dataset'] {} ['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] ['classification', 'regression']
validmind.model_validation.statsmodels.PredictionProbabilitiesHistogram Prediction Probabilities Histogram Assesses the predictive probability distribution for binary classification to evaluate model performance and... ['dataset', 'model'] {'title': {'type': '_empty', 'default': 'Histogram of Predictive Probabilities'}} ['visualization', 'credit_risk'] ['classification']
validmind.model_validation.statsmodels.RegressionCoeffs Regression Coeffs Assesses the significance and uncertainty of predictor variables in a regression model through visualization of... ['model'] {} ['tabular_data', 'visualization', 'model_training'] ['regression']
validmind.model_validation.statsmodels.RegressionFeatureSignificance Regression Feature Significance Assesses and visualizes the statistical significance of features in a regression model.... ['model'] {'fontsize': {'type': 'int', 'default': 10}, 'p_threshold': {'type': 'float', 'default': 0.05}} ['statistical_test', 'model_interpretation', 'visualization', 'feature_importance'] ['regression']
validmind.model_validation.statsmodels.RegressionModelForecastPlot Regression Model Forecast Plot Generates plots to visually compare the forecasted outcomes of a regression model against actual observed values over... ['model', 'dataset'] {'start_date': {'type': None, 'default': None}, 'end_date': {'type': None, 'default': None}} ['time_series_data', 'forecasting', 'visualization'] ['regression']
validmind.model_validation.statsmodels.RegressionModelForecastPlotLevels Regression Model Forecast Plot Levels Assesses the alignment between forecasted and observed values in regression models through visual plots... ['model', 'dataset'] {} ['time_series_data', 'forecasting', 'visualization'] ['regression']
validmind.model_validation.statsmodels.RegressionModelSensitivityPlot Regression Model Sensitivity Plot Assesses the sensitivity of a regression model to changes in independent variables by applying shocks and... ['dataset', 'model'] {'shocks': {'type': None, 'default': [0.1]}, 'transformation': {'type': None, 'default': None}} ['senstivity_analysis', 'visualization'] ['regression']
validmind.model_validation.statsmodels.RegressionModelSummary Regression Model Summary Evaluates regression model performance using metrics including R-Squared, Adjusted R-Squared, MSE, and RMSE.... ['dataset', 'model'] {} ['model_performance', 'regression'] ['regression']
validmind.model_validation.statsmodels.RegressionPermutationFeatureImportance Regression Permutation Feature Importance Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... ['dataset', 'model'] {'fontsize': {'type': 'int', 'default': 12}, 'figure_height': {'type': 'int', 'default': 500}} ['statsmodels', 'feature_importance', 'visualization'] ['regression']
validmind.model_validation.statsmodels.ScorecardHistogram Scorecard Histogram The Scorecard Histogram test evaluates the distribution of credit scores between default and non-default instances,... ['dataset'] {'title': {'type': '_empty', 'default': 'Histogram of Scores'}, 'score_column': {'type': '_empty', 'default': 'score'}} ['visualization', 'credit_risk', 'logistic_regression'] ['classification']
validmind.ongoing_monitoring.CalibrationCurveDrift Calibration Curve Drift Evaluates changes in probability calibration between reference and monitoring datasets.... ['datasets', 'model'] {'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ClassDiscriminationDrift Class Discrimination Drift Compares classification discrimination metrics between reference and monitoring datasets.... ['datasets', 'model'] {'drift_pct_threshold': {'type': '_empty', 'default': 20}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ClassImbalanceDrift Class Imbalance Drift Evaluates drift in class distribution between reference and monitoring datasets.... ['datasets'] {'drift_pct_threshold': {'type': 'float', 'default': 5.0}, 'title': {'type': 'str', 'default': 'Class Distribution Drift'}} ['tabular_data', 'binary_classification', 'multiclass_classification'] ['classification']
validmind.ongoing_monitoring.ClassificationAccuracyDrift Classification Accuracy Drift Compares classification accuracy metrics between reference and monitoring datasets.... ['datasets', 'model'] {'drift_pct_threshold': {'type': '_empty', 'default': 20}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ConfusionMatrixDrift Confusion Matrix Drift Compares confusion matrix metrics between reference and monitoring datasets.... ['datasets', 'model'] {'drift_pct_threshold': {'type': '_empty', 'default': 20}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.ongoing_monitoring.CumulativePredictionProbabilitiesDrift Cumulative Prediction Probabilities Drift Compares cumulative prediction probability distributions between reference and monitoring datasets.... ['datasets', 'model'] {} ['visualization', 'credit_risk'] ['classification']
validmind.ongoing_monitoring.FeatureDrift Feature Drift Evaluates changes in feature distribution over time to identify potential model drift.... ['datasets'] {'bins': {'type': '_empty', 'default': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]}, 'feature_columns': {'type': '_empty', 'default': None}, 'psi_threshold': {'type': '_empty', 'default': 0.2}} ['visualization'] ['monitoring']
validmind.ongoing_monitoring.PredictionAcrossEachFeature Prediction Across Each Feature Assesses differences in model predictions across individual features between reference and monitoring datasets... ['datasets', 'model'] {} ['visualization'] ['monitoring']
validmind.ongoing_monitoring.PredictionCorrelation Prediction Correlation Assesses correlation changes between model predictions from reference and monitoring datasets to detect potential... ['datasets', 'model'] {'drift_pct_threshold': {'type': '_empty', 'default': 20}} ['visualization'] ['monitoring']
validmind.ongoing_monitoring.PredictionProbabilitiesHistogramDrift Prediction Probabilities Histogram Drift Compares prediction probability distributions between reference and monitoring datasets.... ['datasets', 'model'] {'title': {'type': '_empty', 'default': 'Prediction Probabilities Histogram Drift'}, 'drift_pct_threshold': {'type': 'float', 'default': 20.0}} ['visualization', 'credit_risk'] ['classification']
validmind.ongoing_monitoring.PredictionQuantilesAcrossFeatures Prediction Quantiles Across Features Assesses differences in model prediction distributions across individual features between reference... ['datasets', 'model'] {} ['visualization'] ['monitoring']
validmind.ongoing_monitoring.ROCCurveDrift ROC Curve Drift Compares ROC curves between reference and monitoring datasets.... ['datasets', 'model'] {} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ScoreBandsDrift Score Bands Drift Analyzes drift in population distribution and default rates across score bands.... ['datasets', 'model'] {'score_column': {'type': 'str', 'default': 'score'}, 'score_bands': {'type': 'list', 'default': None}, 'drift_threshold': {'type': 'float', 'default': 20.0}} ['visualization', 'credit_risk', 'scorecard'] ['classification']
validmind.ongoing_monitoring.ScorecardHistogramDrift Scorecard Histogram Drift Compares score distributions between reference and monitoring datasets for each class.... ['datasets'] {'score_column': {'type': 'str', 'default': 'score'}, 'title': {'type': 'str', 'default': 'Scorecard Histogram Drift'}, 'drift_pct_threshold': {'type': 'float', 'default': 20.0}} ['visualization', 'credit_risk', 'logistic_regression'] ['classification']
validmind.ongoing_monitoring.TargetPredictionDistributionPlot Target Prediction Distribution Plot Assesses differences in prediction distributions between a reference dataset and a monitoring dataset to identify... ['datasets', 'model'] {'drift_pct_threshold': {'type': '_empty', 'default': 20}} ['visualization'] ['monitoring']
validmind.prompt_validation.Bias Bias Assesses potential bias in a Large Language Model by analyzing the distribution and order of exemplars in the... ['model'] {'min_threshold': {'type': '_empty', 'default': 7}} ['llm', 'few_shot'] ['text_classification', 'text_summarization']
validmind.prompt_validation.Clarity Clarity Evaluates and scores the clarity of prompts in a Large Language Model based on specified guidelines.... ['model'] {'min_threshold': {'type': '_empty', 'default': 7}} ['llm', 'zero_shot', 'few_shot'] ['text_classification', 'text_summarization']
validmind.prompt_validation.Conciseness Conciseness Analyzes and grades the conciseness of prompts provided to a Large Language Model.... ['model'] {'min_threshold': {'type': '_empty', 'default': 7}} ['llm', 'zero_shot', 'few_shot'] ['text_classification', 'text_summarization']
validmind.prompt_validation.Delimitation Delimitation Evaluates the proper use of delimiters in prompts provided to Large Language Models.... ['model'] {'min_threshold': {'type': '_empty', 'default': 7}} ['llm', 'zero_shot', 'few_shot'] ['text_classification', 'text_summarization']
validmind.prompt_validation.NegativeInstruction Negative Instruction Evaluates and grades the use of affirmative, proactive language over negative instructions in LLM prompts.... ['model'] {'min_threshold': {'type': '_empty', 'default': 7}} ['llm', 'zero_shot', 'few_shot'] ['text_classification', 'text_summarization']
validmind.prompt_validation.Robustness Robustness Assesses the robustness of prompts provided to a Large Language Model under varying conditions and contexts. This test... ['model', 'dataset'] {'num_tests': {'type': '_empty', 'default': 10}} ['llm', 'zero_shot', 'few_shot'] ['text_classification', 'text_summarization']
validmind.prompt_validation.Specificity Specificity Evaluates and scores the specificity of prompts provided to a Large Language Model (LLM), based on clarity, detail,... ['model'] {'min_threshold': {'type': '_empty', 'default': 7}} ['llm', 'zero_shot', 'few_shot'] ['text_classification', 'text_summarization']
validmind.unit_metrics.classification.Accuracy Accuracy Calculates the accuracy of a model ['dataset', 'model'] {} ['classification'] ['classification']
validmind.unit_metrics.classification.F1 F1 Calculates the F1 score for a classification model. ['model', 'dataset'] {} ['classification'] ['classification']
validmind.unit_metrics.classification.Precision Precision Calculates the precision for a classification model. ['model', 'dataset'] {} ['classification'] ['classification']
validmind.unit_metrics.classification.ROC_AUC ROC AUC Calculates the ROC AUC for a classification model. ['model', 'dataset'] {} ['classification'] ['classification']
validmind.unit_metrics.classification.Recall Recall Calculates the recall for a classification model. ['model', 'dataset'] {} ['classification'] ['classification']
validmind.unit_metrics.regression.AdjustedRSquaredScore Adjusted R Squared Score Calculates the adjusted R-squared score for a regression model. ['model', 'dataset'] {} ['regression'] ['regression']
validmind.unit_metrics.regression.GiniCoefficient Gini Coefficient Calculates the Gini coefficient for a regression model. ['dataset', 'model'] {} ['regression'] ['regression']
validmind.unit_metrics.regression.HuberLoss Huber Loss Calculates the Huber loss for a regression model. ['model', 'dataset'] {} ['regression'] ['regression']
validmind.unit_metrics.regression.KolmogorovSmirnovStatistic Kolmogorov Smirnov Statistic Calculates the Kolmogorov-Smirnov statistic for a regression model. ['dataset', 'model'] {} ['regression'] ['regression']
validmind.unit_metrics.regression.MeanAbsoluteError Mean Absolute Error Calculates the mean absolute error for a regression model. ['model', 'dataset'] {} ['regression'] ['regression']
validmind.unit_metrics.regression.MeanAbsolutePercentageError Mean Absolute Percentage Error Calculates the mean absolute percentage error for a regression model. ['model', 'dataset'] {} ['regression'] ['regression']
validmind.unit_metrics.regression.MeanBiasDeviation Mean Bias Deviation Calculates the mean bias deviation for a regression model. ['model', 'dataset'] {} ['regression'] ['regression']
validmind.unit_metrics.regression.MeanSquaredError Mean Squared Error Calculates the mean squared error for a regression model. ['model', 'dataset'] {} ['regression'] ['regression']
validmind.unit_metrics.regression.QuantileLoss Quantile Loss Calculates the quantile loss for a regression model. ['model', 'dataset'] {'quantile': {'type': '_empty', 'default': 0.5}} ['regression'] ['regression']
validmind.unit_metrics.regression.RSquaredScore R Squared Score Calculates the R-squared score for a regression model. ['model', 'dataset'] {} ['regression'] ['regression']
validmind.unit_metrics.regression.RootMeanSquaredError Root Mean Squared Error Calculates the root mean squared error for a regression model. ['model', 'dataset'] {} ['regression'] ['regression']

Understanding Tags and Task Types

Effectively using ValidMind's tests involves a deep understanding of its 'tags' and 'task types'. Here's a breakdown:

  • Task Types: Represent the kind of modeling task associated with a test. For instance:

    • classification: Works with Classification Models and Datasets
    • regression: Works with Regression Models and Datasets
    • text classification: Works with Text Classification Models and Datasets
    • text summarization: Works with Text Summarization Models and Datasets
  • Tags: Free-form descriptors providing more details about the test, what data and models the test is compatible with and what category the test falls into etc. Some examples include:

    • llm: Tests that work with Large Language Models
    • nlp: Tests relevant for natural language processing.
    • binary_classification: Tests for binary classification tasks.
    • forecasting: Tests for forecasting and time-series analysis.
    • tabular_data: Tests for tabular data like CSVs and Excel spreadsheets.

You can use the functions list_tasks() and list_tags() to view all the tasks and tags used for classifying all the tests available in the ValidMind Library:

list_tasks()
['time_series_forecasting',
 'feature_extraction',
 'text_qa',
 'text_generation',
 'residual_analysis',
 'visualization',
 'text_classification',
 'regression',
 'nlp',
 'text_summarization',
 'data_validation',
 'classification',
 'clustering',
 'monitoring']
list_tags()
['few_shot',
 'ragas',
 'bias_and_fairness',
 'AUC',
 'visualization',
 'rag_performance',
 'logistic_regression',
 'model_validation',
 'credit_risk',
 'model_selection',
 'linear_regression',
 'clustering',
 'data_distribution',
 'model_explainability',
 'frequency_analysis',
 'model_interpretation',
 'time_series_data',
 'forecasting',
 'llm',
 'multiclass_classification',
 'data_validation',
 'binary_classification',
 'stationarity',
 'senstivity_analysis',
 'retrieval_performance',
 'categorical_data',
 'seasonality',
 'qualitative',
 'model_comparison',
 'model_training',
 'data_quality',
 'regression',
 'anomaly_detection',
 'calibration',
 'model_predictions',
 'dimensionality_reduction',
 'descriptive_statistics',
 'classification',
 'unit_root_test',
 'metadata',
 'threshold_optimization',
 'model_diagnosis',
 'feature_selection',
 'data_analysis',
 'statistical_test',
 'embeddings',
 'analysis',
 'feature_importance',
 'scorecard',
 'correlation',
 'classification_metrics',
 'nlp',
 'sklearn',
 'kmeans',
 'statsmodels',
 'numerical_data',
 'zero_shot',
 'text_data',
 'tabular_data',
 'model_performance']

If you want to see which tags correspond to which task type, you can use the function list_tasks_and_tags():

list_tasks_and_tags()
Task Tags
regression bias_and_fairness, visualization, model_selection, linear_regression, data_distribution, model_explainability, model_interpretation, time_series_data, forecasting, multiclass_classification, data_validation, binary_classification, stationarity, model_performance, senstivity_analysis, categorical_data, seasonality, data_quality, regression, model_predictions, descriptive_statistics, unit_root_test, metadata, model_diagnosis, feature_selection, data_analysis, statistical_test, analysis, feature_importance, correlation, sklearn, statsmodels, numerical_data, text_data, tabular_data, model_training
classification bias_and_fairness, AUC, visualization, logistic_regression, model_validation, credit_risk, linear_regression, data_distribution, time_series_data, multiclass_classification, binary_classification, categorical_data, model_comparison, model_training, data_quality, anomaly_detection, calibration, descriptive_statistics, classification, metadata, model_diagnosis, threshold_optimization, feature_selection, data_analysis, statistical_test, classification_metrics, feature_importance, scorecard, correlation, sklearn, statsmodels, numerical_data, text_data, tabular_data, model_performance
text_classification few_shot, ragas, visualization, frequency_analysis, model_comparison, feature_importance, time_series_data, nlp, llm, sklearn, multiclass_classification, zero_shot, text_data, binary_classification, retrieval_performance, tabular_data, model_performance, model_diagnosis
text_summarization few_shot, ragas, qualitative, visualization, frequency_analysis, embeddings, rag_performance, time_series_data, nlp, llm, zero_shot, text_data, dimensionality_reduction, retrieval_performance, tabular_data
data_validation stationarity, time_series_data, statsmodels, unit_root_test
time_series_forecasting model_explainability, visualization, time_series_data, sklearn, model_predictions, data_validation, model_performance, model_training, metadata
nlp visualization, frequency_analysis, data_validation, nlp, text_data
clustering sklearn, kmeans, clustering, model_performance
residual_analysis regression
visualization regression
feature_extraction text_data, llm, visualization, embeddings
text_qa ragas, qualitative, visualization, embeddings, rag_performance, llm, dimensionality_reduction, retrieval_performance
text_generation ragas, qualitative, visualization, embeddings, rag_performance, llm, dimensionality_reduction, retrieval_performance
monitoring visualization

Searching for Specific Tests using tags and tasks

While listing all tests is valuable, there are times when you need to narrow down your search. The list_tests function offers filter, task, and tags parameters to assist in this.

If you're targeting a specific test or tests that match a particular task type, the filter parameter comes in handy. For example, to list tests that are compatible with 'sklearn' models:

list_tests(filter="sklearn")
ID Name Description Required Inputs Params Tags Tasks
validmind.model_validation.ClusterSizeDistribution Cluster Size Distribution Assesses the performance of clustering models by comparing the distribution of cluster sizes in model predictions... ['dataset', 'model'] {} ['sklearn', 'model_performance'] ['clustering']
validmind.model_validation.TimeSeriesR2SquareBySegments Time Series R2 Square By Segments Evaluates the R-Squared values of regression models over specified time segments in time series data to assess... ['dataset', 'model'] {'segments': {'type': '_empty', 'default': None}} ['model_performance', 'sklearn'] ['regression', 'time_series_forecasting']
validmind.model_validation.sklearn.AdjustedMutualInformation Adjusted Mutual Information Evaluates clustering model performance by measuring mutual information between true and predicted labels, adjusting... ['model', 'dataset'] {} ['sklearn', 'model_performance', 'clustering'] ['clustering']
validmind.model_validation.sklearn.AdjustedRandIndex Adjusted Rand Index Measures the similarity between two data clusters using the Adjusted Rand Index (ARI) metric in clustering machine... ['model', 'dataset'] {} ['sklearn', 'model_performance', 'clustering'] ['clustering']
validmind.model_validation.sklearn.CalibrationCurve Calibration Curve Evaluates the calibration of probability estimates by comparing predicted probabilities against observed... ['model', 'dataset'] {'n_bins': {'type': 'int', 'default': 10}} ['sklearn', 'model_performance', 'classification'] ['classification']
validmind.model_validation.sklearn.ClassifierPerformance Classifier Performance Evaluates performance of binary or multiclass classification models using precision, recall, F1-Score, accuracy,... ['dataset', 'model'] {'average': {'type': 'str', 'default': 'macro'}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ClassifierThresholdOptimization Classifier Threshold Optimization Analyzes and visualizes different threshold optimization methods for binary classification models.... ['dataset', 'model'] {'methods': {'type': None, 'default': None}, 'target_recall': {'type': None, 'default': None}} ['model_validation', 'threshold_optimization', 'classification_metrics'] ['classification']
validmind.model_validation.sklearn.ClusterCosineSimilarity Cluster Cosine Similarity Measures the intra-cluster similarity of a clustering model using cosine similarity.... ['model', 'dataset'] {} ['sklearn', 'model_performance', 'clustering'] ['clustering']
validmind.model_validation.sklearn.ClusterPerformanceMetrics Cluster Performance Metrics Evaluates the performance of clustering machine learning models using multiple established metrics.... ['model', 'dataset'] {} ['sklearn', 'model_performance', 'clustering'] ['clustering']
validmind.model_validation.sklearn.CompletenessScore Completeness Score Evaluates a clustering model's capacity to categorize instances from a single class into the same cluster.... ['model', 'dataset'] {} ['sklearn', 'model_performance', 'clustering'] ['clustering']
validmind.model_validation.sklearn.ConfusionMatrix Confusion Matrix Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... ['dataset', 'model'] {'threshold': {'type': 'float', 'default': 0.5}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.FeatureImportance Feature Importance Compute feature importance scores for a given model and generate a summary table... ['dataset', 'model'] {'num_features': {'type': 'int', 'default': 3}} ['model_explainability', 'sklearn'] ['regression', 'time_series_forecasting']
validmind.model_validation.sklearn.FowlkesMallowsScore Fowlkes Mallows Score Evaluates the similarity between predicted and actual cluster assignments in a model using the Fowlkes-Mallows... ['dataset', 'model'] {} ['sklearn', 'model_performance'] ['clustering']
validmind.model_validation.sklearn.HomogeneityScore Homogeneity Score Assesses clustering homogeneity by comparing true and predicted labels, scoring from 0 (heterogeneous) to 1... ['dataset', 'model'] {} ['sklearn', 'model_performance'] ['clustering']
validmind.model_validation.sklearn.HyperParametersTuning Hyper Parameters Tuning Performs exhaustive grid search over specified parameter ranges to find optimal model configurations... ['model', 'dataset'] {'param_grid': {'type': 'dict', 'default': None}, 'scoring': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}, 'fit_params': {'type': 'dict', 'default': None}} ['sklearn', 'model_performance'] ['clustering', 'classification']
validmind.model_validation.sklearn.KMeansClustersOptimization K Means Clusters Optimization Optimizes the number of clusters in K-means models using Elbow and Silhouette methods.... ['model', 'dataset'] {'n_clusters': {'type': None, 'default': None}} ['sklearn', 'model_performance', 'kmeans'] ['clustering']
validmind.model_validation.sklearn.MinimumAccuracy Minimum Accuracy Checks if the model's prediction accuracy meets or surpasses a specified threshold.... ['dataset', 'model'] {'min_threshold': {'type': 'float', 'default': 0.7}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.MinimumF1Score Minimum F1 Score Assesses if the model's F1 score on the validation set meets a predefined minimum threshold, ensuring balanced... ['dataset', 'model'] {'min_threshold': {'type': 'float', 'default': 0.5}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.MinimumROCAUCScore Minimum ROCAUC Score Validates model by checking if the ROC AUC score meets or surpasses a specified threshold.... ['dataset', 'model'] {'min_threshold': {'type': 'float', 'default': 0.5}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ModelParameters Model Parameters Extracts and displays model parameters in a structured format for transparency and reproducibility.... ['model'] {'model_params': {'type': '_empty', 'default': None}} ['model_training', 'metadata'] ['classification', 'regression']
validmind.model_validation.sklearn.ModelsPerformanceComparison Models Performance Comparison Evaluates and compares the performance of multiple Machine Learning models using various metrics like accuracy,... ['dataset', 'models'] {} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'model_comparison'] ['classification', 'text_classification']
validmind.model_validation.sklearn.OverfitDiagnosis Overfit Diagnosis Assesses potential overfitting in a model's predictions, identifying regions where performance between training and... ['model', 'datasets'] {'metric': {'type': 'str', 'default': None}, 'cut_off_threshold': {'type': 'float', 'default': 0.04}} ['sklearn', 'binary_classification', 'multiclass_classification', 'linear_regression', 'model_diagnosis'] ['classification', 'regression']
validmind.model_validation.sklearn.PermutationFeatureImportance Permutation Feature Importance Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... ['model', 'dataset'] {'fontsize': {'type': None, 'default': None}, 'figure_height': {'type': None, 'default': None}} ['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.PopulationStabilityIndex Population Stability Index Assesses the Population Stability Index (PSI) to quantify the stability of an ML model's predictions across... ['datasets', 'model'] {'num_bins': {'type': 'int', 'default': 10}, 'mode': {'type': 'str', 'default': 'fixed'}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.PrecisionRecallCurve Precision Recall Curve Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... ['model', 'dataset'] {} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ROCCurve ROC Curve Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... ['model', 'dataset'] {} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.RegressionErrors Regression Errors Assesses the performance and error distribution of a regression model using various error metrics.... ['model', 'dataset'] {} ['sklearn', 'model_performance'] ['regression', 'classification']
validmind.model_validation.sklearn.RegressionErrorsComparison Regression Errors Comparison Assesses multiple regression error metrics to compare model performance across different datasets, emphasizing... ['datasets', 'models'] {} ['model_performance', 'sklearn'] ['regression', 'time_series_forecasting']
validmind.model_validation.sklearn.RegressionPerformance Regression Performance Evaluates the performance of a regression model using five different metrics: MAE, MSE, RMSE, MAPE, and MBD.... ['model', 'dataset'] {} ['sklearn', 'model_performance'] ['regression']
validmind.model_validation.sklearn.RegressionR2Square Regression R2 Square Assesses the overall goodness-of-fit of a regression model by evaluating R-squared (R2) and Adjusted R-squared (Adj... ['dataset', 'model'] {} ['sklearn', 'model_performance'] ['regression']
validmind.model_validation.sklearn.RegressionR2SquareComparison Regression R2 Square Comparison Compares R-Squared and Adjusted R-Squared values for different regression models across multiple datasets to assess... ['datasets', 'models'] {} ['model_performance', 'sklearn'] ['regression', 'time_series_forecasting']
validmind.model_validation.sklearn.RobustnessDiagnosis Robustness Diagnosis Assesses the robustness of a machine learning model by evaluating performance decay under noisy conditions.... ['datasets', 'model'] {'metric': {'type': 'str', 'default': None}, 'scaling_factor_std_dev_list': {'type': None, 'default': [0.1, 0.2, 0.3, 0.4, 0.5]}, 'performance_decay_threshold': {'type': 'float', 'default': 0.05}} ['sklearn', 'model_diagnosis', 'visualization'] ['classification', 'regression']
validmind.model_validation.sklearn.SHAPGlobalImportance SHAP Global Importance Evaluates and visualizes global feature importance using SHAP values for model explanation and risk identification.... ['model', 'dataset'] {'kernel_explainer_samples': {'type': 'int', 'default': 10}, 'tree_or_linear_explainer_samples': {'type': 'int', 'default': 200}, 'class_of_interest': {'type': None, 'default': None}} ['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ScoreProbabilityAlignment Score Probability Alignment Analyzes the alignment between credit scores and predicted probabilities.... ['model', 'dataset'] {'score_column': {'type': 'str', 'default': 'score'}, 'n_bins': {'type': 'int', 'default': 10}} ['visualization', 'credit_risk', 'calibration'] ['classification']
validmind.model_validation.sklearn.SilhouettePlot Silhouette Plot Calculates and visualizes Silhouette Score, assessing the degree of data point suitability to its cluster in ML... ['model', 'dataset'] {} ['sklearn', 'model_performance'] ['clustering']
validmind.model_validation.sklearn.TrainingTestDegradation Training Test Degradation Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... ['datasets', 'model'] {'max_threshold': {'type': 'float', 'default': 0.1}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.VMeasure V Measure Evaluates homogeneity and completeness of a clustering model using the V Measure Score.... ['dataset', 'model'] {} ['sklearn', 'model_performance'] ['clustering']
validmind.model_validation.sklearn.WeakspotsDiagnosis Weakspots Diagnosis Identifies and visualizes weak spots in a machine learning model's performance across various sections of the... ['datasets', 'model'] {'features_columns': {'type': None, 'default': None}, 'metrics': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_diagnosis', 'visualization'] ['classification', 'text_classification']
validmind.ongoing_monitoring.CalibrationCurveDrift Calibration Curve Drift Evaluates changes in probability calibration between reference and monitoring datasets.... ['datasets', 'model'] {'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ClassDiscriminationDrift Class Discrimination Drift Compares classification discrimination metrics between reference and monitoring datasets.... ['datasets', 'model'] {'drift_pct_threshold': {'type': '_empty', 'default': 20}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ClassificationAccuracyDrift Classification Accuracy Drift Compares classification accuracy metrics between reference and monitoring datasets.... ['datasets', 'model'] {'drift_pct_threshold': {'type': '_empty', 'default': 20}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ConfusionMatrixDrift Confusion Matrix Drift Compares confusion matrix metrics between reference and monitoring datasets.... ['datasets', 'model'] {'drift_pct_threshold': {'type': '_empty', 'default': 20}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ROCCurveDrift ROC Curve Drift Compares ROC curves between reference and monitoring datasets.... ['datasets', 'model'] {} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']

The task parameter is designed for pinpointing tests that align with a specific task type. For instance, to find tests tailored for 'classification' tasks:

list_tests(task="classification")
ID Name Description Required Inputs Params Tags Tasks
validmind.data_validation.BivariateScatterPlots Bivariate Scatter Plots Generates bivariate scatterplots to visually inspect relationships between pairs of numerical predictor variables... ['dataset'] {} ['tabular_data', 'numerical_data', 'visualization'] ['classification']
validmind.data_validation.ChiSquaredFeaturesTable Chi Squared Features Table Assesses the statistical association between categorical features and a target variable using the Chi-Squared test.... ['dataset'] {'p_threshold': {'type': '_empty', 'default': 0.05}} ['tabular_data', 'categorical_data', 'statistical_test'] ['classification']
validmind.data_validation.ClassImbalance Class Imbalance Evaluates and quantifies class distribution imbalance in a dataset used by a machine learning model.... ['dataset'] {'min_percent_threshold': {'type': 'int', 'default': 10}} ['tabular_data', 'binary_classification', 'multiclass_classification', 'data_quality'] ['classification']
validmind.data_validation.DatasetDescription Dataset Description Provides comprehensive analysis and statistical summaries of each column in a machine learning model's dataset.... ['dataset'] {} ['tabular_data', 'time_series_data', 'text_data'] ['classification', 'regression', 'text_classification', 'text_summarization']
validmind.data_validation.DatasetSplit Dataset Split Evaluates and visualizes the distribution proportions among training, testing, and validation datasets of an ML... ['datasets'] {} ['tabular_data', 'time_series_data', 'text_data'] ['classification', 'regression', 'text_classification', 'text_summarization']
validmind.data_validation.DescriptiveStatistics Descriptive Statistics Performs a detailed descriptive statistical analysis of both numerical and categorical data within a model's... ['dataset'] {} ['tabular_data', 'time_series_data', 'data_quality'] ['classification', 'regression']
validmind.data_validation.Duplicates Duplicates Tests dataset for duplicate entries, ensuring model reliability via data quality verification.... ['dataset'] {'min_threshold': {'type': '_empty', 'default': 1}} ['tabular_data', 'data_quality', 'text_data'] ['classification', 'regression']
validmind.data_validation.FeatureTargetCorrelationPlot Feature Target Correlation Plot Visualizes the correlation between input features and the model's target output in a color-coded horizontal bar... ['dataset'] {'fig_height': {'type': '_empty', 'default': 600}} ['tabular_data', 'visualization', 'correlation'] ['classification', 'regression']
validmind.data_validation.HighCardinality High Cardinality Assesses the number of unique values in categorical columns to detect high cardinality and potential overfitting.... ['dataset'] {'num_threshold': {'type': 'int', 'default': 100}, 'percent_threshold': {'type': 'float', 'default': 0.1}, 'threshold_type': {'type': 'str', 'default': 'percent'}} ['tabular_data', 'data_quality', 'categorical_data'] ['classification', 'regression']
validmind.data_validation.HighPearsonCorrelation High Pearson Correlation Identifies highly correlated feature pairs in a dataset suggesting feature redundancy or multicollinearity.... ['dataset'] {'max_threshold': {'type': 'float', 'default': 0.3}, 'top_n_correlations': {'type': 'int', 'default': 10}, 'feature_columns': {'type': 'list', 'default': None}} ['tabular_data', 'data_quality', 'correlation'] ['classification', 'regression']
validmind.data_validation.IQROutliersBarPlot IQR Outliers Bar Plot Visualizes outlier distribution across percentiles in numerical data using the Interquartile Range (IQR) method.... ['dataset'] {'threshold': {'type': 'float', 'default': 1.5}, 'fig_width': {'type': 'int', 'default': 800}} ['tabular_data', 'visualization', 'numerical_data'] ['classification', 'regression']
validmind.data_validation.IQROutliersTable IQR Outliers Table Determines and summarizes outliers in numerical features using the Interquartile Range method.... ['dataset'] {'threshold': {'type': 'float', 'default': 1.5}} ['tabular_data', 'numerical_data'] ['classification', 'regression']
validmind.data_validation.IsolationForestOutliers Isolation Forest Outliers Detects outliers in a dataset using the Isolation Forest algorithm and visualizes results through scatter plots.... ['dataset'] {'random_state': {'type': 'int', 'default': 0}, 'contamination': {'type': 'float', 'default': 0.1}, 'feature_columns': {'type': 'list', 'default': None}} ['tabular_data', 'anomaly_detection'] ['classification']
validmind.data_validation.JarqueBera Jarque Bera Assesses normality of dataset features in an ML model using the Jarque-Bera test.... ['dataset'] {} ['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] ['classification', 'regression']
validmind.data_validation.MissingValues Missing Values Evaluates dataset quality by ensuring missing value ratio across all features does not exceed a set threshold.... ['dataset'] {'min_threshold': {'type': 'int', 'default': 1}} ['tabular_data', 'data_quality'] ['classification', 'regression']
validmind.data_validation.MissingValuesBarPlot Missing Values Bar Plot Assesses the percentage and distribution of missing values in the dataset via a bar plot, with emphasis on... ['dataset'] {'threshold': {'type': 'int', 'default': 80}, 'fig_height': {'type': 'int', 'default': 600}} ['tabular_data', 'data_quality', 'visualization'] ['classification', 'regression']
validmind.data_validation.MutualInformation Mutual Information Calculates mutual information scores between features and target variable to evaluate feature relevance.... ['dataset'] {'min_threshold': {'type': 'float', 'default': 0.01}, 'task': {'type': 'str', 'default': 'classification'}} ['feature_selection', 'data_analysis'] ['classification', 'regression']
validmind.data_validation.PearsonCorrelationMatrix Pearson Correlation Matrix Evaluates linear dependency between numerical variables in a dataset via a Pearson Correlation coefficient heat map.... ['dataset'] {} ['tabular_data', 'numerical_data', 'correlation'] ['classification', 'regression']
validmind.data_validation.ProtectedClassesDescription Protected Classes Description Visualizes the distribution of protected classes in the dataset relative to the target variable... ['dataset'] {'protected_classes': {'type': '_empty', 'default': None}} ['bias_and_fairness', 'descriptive_statistics'] ['classification', 'regression']
validmind.data_validation.RunsTest Runs Test Executes Runs Test on ML model to detect non-random patterns in output data sequence.... ['dataset'] {} ['tabular_data', 'statistical_test', 'statsmodels'] ['classification', 'regression']
validmind.data_validation.ScatterPlot Scatter Plot Assesses visual relationships, patterns, and outliers among features in a dataset through scatter plot matrices.... ['dataset'] {} ['tabular_data', 'visualization'] ['classification', 'regression']
validmind.data_validation.ScoreBandDefaultRates Score Band Default Rates Analyzes default rates and population distribution across credit score bands.... ['dataset', 'model'] {'score_column': {'type': 'str', 'default': 'score'}, 'score_bands': {'type': 'list', 'default': None}} ['visualization', 'credit_risk', 'scorecard'] ['classification']
validmind.data_validation.ShapiroWilk Shapiro Wilk Evaluates feature-wise normality of training data using the Shapiro-Wilk test.... ['dataset'] {} ['tabular_data', 'data_distribution', 'statistical_test'] ['classification', 'regression']
validmind.data_validation.Skewness Skewness Evaluates the skewness of numerical data in a dataset to check against a defined threshold, aiming to ensure data... ['dataset'] {'max_threshold': {'type': '_empty', 'default': 1}} ['data_quality', 'tabular_data'] ['classification', 'regression']
validmind.data_validation.TabularCategoricalBarPlots Tabular Categorical Bar Plots Generates and visualizes bar plots for each category in categorical features to evaluate the dataset's composition.... ['dataset'] {} ['tabular_data', 'visualization'] ['classification', 'regression']
validmind.data_validation.TabularDateTimeHistograms Tabular Date Time Histograms Generates histograms to provide graphical insight into the distribution of time intervals in a model's datetime... ['dataset'] {} ['time_series_data', 'visualization'] ['classification', 'regression']
validmind.data_validation.TabularDescriptionTables Tabular Description Tables Summarizes key descriptive statistics for numerical, categorical, and datetime variables in a dataset.... ['dataset'] {} ['tabular_data'] ['classification', 'regression']
validmind.data_validation.TabularNumericalHistograms Tabular Numerical Histograms Generates histograms for each numerical feature in a dataset to provide visual insights into data distribution and... ['dataset'] {} ['tabular_data', 'visualization'] ['classification', 'regression']
validmind.data_validation.TargetRateBarPlots Target Rate Bar Plots Generates bar plots visualizing the default rates of categorical features for a classification machine learning... ['dataset'] {} ['tabular_data', 'visualization', 'categorical_data'] ['classification']
validmind.data_validation.TooManyZeroValues Too Many Zero Values Identifies numerical columns in a dataset that contain an excessive number of zero values, defined by a threshold... ['dataset'] {'max_percent_threshold': {'type': 'float', 'default': 0.03}} ['tabular_data'] ['regression', 'classification']
validmind.data_validation.UniqueRows Unique Rows Verifies the diversity of the dataset by ensuring that the count of unique rows exceeds a prescribed threshold.... ['dataset'] {'min_percent_threshold': {'type': 'float', 'default': 1}} ['tabular_data'] ['regression', 'classification']
validmind.data_validation.WOEBinPlots WOE Bin Plots Generates visualizations of Weight of Evidence (WoE) and Information Value (IV) for understanding predictive power... ['dataset'] {'breaks_adj': {'type': 'list', 'default': None}, 'fig_height': {'type': 'int', 'default': 600}, 'fig_width': {'type': 'int', 'default': 500}} ['tabular_data', 'visualization', 'categorical_data'] ['classification']
validmind.data_validation.WOEBinTable WOE Bin Table Assesses the Weight of Evidence (WoE) and Information Value (IV) of each feature to evaluate its predictive power... ['dataset'] {'breaks_adj': {'type': 'list', 'default': None}} ['tabular_data', 'categorical_data'] ['classification']
validmind.model_validation.FeaturesAUC Features AUC Evaluates the discriminatory power of each individual feature within a binary classification model by calculating... ['dataset'] {'fontsize': {'type': 'int', 'default': 12}, 'figure_height': {'type': 'int', 'default': 500}} ['feature_importance', 'AUC', 'visualization'] ['classification']
validmind.model_validation.sklearn.CalibrationCurve Calibration Curve Evaluates the calibration of probability estimates by comparing predicted probabilities against observed... ['model', 'dataset'] {'n_bins': {'type': 'int', 'default': 10}} ['sklearn', 'model_performance', 'classification'] ['classification']
validmind.model_validation.sklearn.ClassifierPerformance Classifier Performance Evaluates performance of binary or multiclass classification models using precision, recall, F1-Score, accuracy,... ['dataset', 'model'] {'average': {'type': 'str', 'default': 'macro'}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ClassifierThresholdOptimization Classifier Threshold Optimization Analyzes and visualizes different threshold optimization methods for binary classification models.... ['dataset', 'model'] {'methods': {'type': None, 'default': None}, 'target_recall': {'type': None, 'default': None}} ['model_validation', 'threshold_optimization', 'classification_metrics'] ['classification']
validmind.model_validation.sklearn.ConfusionMatrix Confusion Matrix Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... ['dataset', 'model'] {'threshold': {'type': 'float', 'default': 0.5}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.HyperParametersTuning Hyper Parameters Tuning Performs exhaustive grid search over specified parameter ranges to find optimal model configurations... ['model', 'dataset'] {'param_grid': {'type': 'dict', 'default': None}, 'scoring': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}, 'fit_params': {'type': 'dict', 'default': None}} ['sklearn', 'model_performance'] ['clustering', 'classification']
validmind.model_validation.sklearn.MinimumAccuracy Minimum Accuracy Checks if the model's prediction accuracy meets or surpasses a specified threshold.... ['dataset', 'model'] {'min_threshold': {'type': 'float', 'default': 0.7}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.MinimumF1Score Minimum F1 Score Assesses if the model's F1 score on the validation set meets a predefined minimum threshold, ensuring balanced... ['dataset', 'model'] {'min_threshold': {'type': 'float', 'default': 0.5}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.MinimumROCAUCScore Minimum ROCAUC Score Validates model by checking if the ROC AUC score meets or surpasses a specified threshold.... ['dataset', 'model'] {'min_threshold': {'type': 'float', 'default': 0.5}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ModelParameters Model Parameters Extracts and displays model parameters in a structured format for transparency and reproducibility.... ['model'] {'model_params': {'type': '_empty', 'default': None}} ['model_training', 'metadata'] ['classification', 'regression']
validmind.model_validation.sklearn.ModelsPerformanceComparison Models Performance Comparison Evaluates and compares the performance of multiple Machine Learning models using various metrics like accuracy,... ['dataset', 'models'] {} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'model_comparison'] ['classification', 'text_classification']
validmind.model_validation.sklearn.OverfitDiagnosis Overfit Diagnosis Assesses potential overfitting in a model's predictions, identifying regions where performance between training and... ['model', 'datasets'] {'metric': {'type': 'str', 'default': None}, 'cut_off_threshold': {'type': 'float', 'default': 0.04}} ['sklearn', 'binary_classification', 'multiclass_classification', 'linear_regression', 'model_diagnosis'] ['classification', 'regression']
validmind.model_validation.sklearn.PermutationFeatureImportance Permutation Feature Importance Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... ['model', 'dataset'] {'fontsize': {'type': None, 'default': None}, 'figure_height': {'type': None, 'default': None}} ['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.PopulationStabilityIndex Population Stability Index Assesses the Population Stability Index (PSI) to quantify the stability of an ML model's predictions across... ['datasets', 'model'] {'num_bins': {'type': 'int', 'default': 10}, 'mode': {'type': 'str', 'default': 'fixed'}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.model_validation.sklearn.PrecisionRecallCurve Precision Recall Curve Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... ['model', 'dataset'] {} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ROCCurve ROC Curve Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... ['model', 'dataset'] {} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.RegressionErrors Regression Errors Assesses the performance and error distribution of a regression model using various error metrics.... ['model', 'dataset'] {} ['sklearn', 'model_performance'] ['regression', 'classification']
validmind.model_validation.sklearn.RobustnessDiagnosis Robustness Diagnosis Assesses the robustness of a machine learning model by evaluating performance decay under noisy conditions.... ['datasets', 'model'] {'metric': {'type': 'str', 'default': None}, 'scaling_factor_std_dev_list': {'type': None, 'default': [0.1, 0.2, 0.3, 0.4, 0.5]}, 'performance_decay_threshold': {'type': 'float', 'default': 0.05}} ['sklearn', 'model_diagnosis', 'visualization'] ['classification', 'regression']
validmind.model_validation.sklearn.SHAPGlobalImportance SHAP Global Importance Evaluates and visualizes global feature importance using SHAP values for model explanation and risk identification.... ['model', 'dataset'] {'kernel_explainer_samples': {'type': 'int', 'default': 10}, 'tree_or_linear_explainer_samples': {'type': 'int', 'default': 200}, 'class_of_interest': {'type': None, 'default': None}} ['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ScoreProbabilityAlignment Score Probability Alignment Analyzes the alignment between credit scores and predicted probabilities.... ['model', 'dataset'] {'score_column': {'type': 'str', 'default': 'score'}, 'n_bins': {'type': 'int', 'default': 10}} ['visualization', 'credit_risk', 'calibration'] ['classification']
validmind.model_validation.sklearn.TrainingTestDegradation Training Test Degradation Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... ['datasets', 'model'] {'max_threshold': {'type': 'float', 'default': 0.1}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.WeakspotsDiagnosis Weakspots Diagnosis Identifies and visualizes weak spots in a machine learning model's performance across various sections of the... ['datasets', 'model'] {'features_columns': {'type': None, 'default': None}, 'metrics': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_diagnosis', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.statsmodels.CumulativePredictionProbabilities Cumulative Prediction Probabilities Visualizes cumulative probabilities of positive and negative classes for both training and testing in classification models.... ['dataset', 'model'] {'title': {'type': '_empty', 'default': 'Cumulative Probabilities'}} ['visualization', 'credit_risk'] ['classification']
validmind.model_validation.statsmodels.GINITable GINI Table Evaluates classification model performance using AUC, GINI, and KS metrics for training and test datasets.... ['dataset', 'model'] {} ['model_performance'] ['classification']
validmind.model_validation.statsmodels.KolmogorovSmirnov Kolmogorov Smirnov Assesses whether each feature in the dataset aligns with a normal distribution using the Kolmogorov-Smirnov test.... ['model', 'dataset'] {'dist': {'type': 'str', 'default': 'norm'}} ['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] ['classification', 'regression']
validmind.model_validation.statsmodels.Lilliefors Lilliefors Assesses the normality of feature distributions in an ML model's training dataset using the Lilliefors test.... ['dataset'] {} ['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] ['classification', 'regression']
validmind.model_validation.statsmodels.PredictionProbabilitiesHistogram Prediction Probabilities Histogram Assesses the predictive probability distribution for binary classification to evaluate model performance and... ['dataset', 'model'] {'title': {'type': '_empty', 'default': 'Histogram of Predictive Probabilities'}} ['visualization', 'credit_risk'] ['classification']
validmind.model_validation.statsmodels.ScorecardHistogram Scorecard Histogram The Scorecard Histogram test evaluates the distribution of credit scores between default and non-default instances,... ['dataset'] {'title': {'type': '_empty', 'default': 'Histogram of Scores'}, 'score_column': {'type': '_empty', 'default': 'score'}} ['visualization', 'credit_risk', 'logistic_regression'] ['classification']
validmind.ongoing_monitoring.CalibrationCurveDrift Calibration Curve Drift Evaluates changes in probability calibration between reference and monitoring datasets.... ['datasets', 'model'] {'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ClassDiscriminationDrift Class Discrimination Drift Compares classification discrimination metrics between reference and monitoring datasets.... ['datasets', 'model'] {'drift_pct_threshold': {'type': '_empty', 'default': 20}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ClassImbalanceDrift Class Imbalance Drift Evaluates drift in class distribution between reference and monitoring datasets.... ['datasets'] {'drift_pct_threshold': {'type': 'float', 'default': 5.0}, 'title': {'type': 'str', 'default': 'Class Distribution Drift'}} ['tabular_data', 'binary_classification', 'multiclass_classification'] ['classification']
validmind.ongoing_monitoring.ClassificationAccuracyDrift Classification Accuracy Drift Compares classification accuracy metrics between reference and monitoring datasets.... ['datasets', 'model'] {'drift_pct_threshold': {'type': '_empty', 'default': 20}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ConfusionMatrixDrift Confusion Matrix Drift Compares confusion matrix metrics between reference and monitoring datasets.... ['datasets', 'model'] {'drift_pct_threshold': {'type': '_empty', 'default': 20}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] ['classification', 'text_classification']
validmind.ongoing_monitoring.CumulativePredictionProbabilitiesDrift Cumulative Prediction Probabilities Drift Compares cumulative prediction probability distributions between reference and monitoring datasets.... ['datasets', 'model'] {} ['visualization', 'credit_risk'] ['classification']
validmind.ongoing_monitoring.PredictionProbabilitiesHistogramDrift Prediction Probabilities Histogram Drift Compares prediction probability distributions between reference and monitoring datasets.... ['datasets', 'model'] {'title': {'type': '_empty', 'default': 'Prediction Probabilities Histogram Drift'}, 'drift_pct_threshold': {'type': 'float', 'default': 20.0}} ['visualization', 'credit_risk'] ['classification']
validmind.ongoing_monitoring.ROCCurveDrift ROC Curve Drift Compares ROC curves between reference and monitoring datasets.... ['datasets', 'model'] {} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ScoreBandsDrift Score Bands Drift Analyzes drift in population distribution and default rates across score bands.... ['datasets', 'model'] {'score_column': {'type': 'str', 'default': 'score'}, 'score_bands': {'type': 'list', 'default': None}, 'drift_threshold': {'type': 'float', 'default': 20.0}} ['visualization', 'credit_risk', 'scorecard'] ['classification']
validmind.ongoing_monitoring.ScorecardHistogramDrift Scorecard Histogram Drift Compares score distributions between reference and monitoring datasets for each class.... ['datasets'] {'score_column': {'type': 'str', 'default': 'score'}, 'title': {'type': 'str', 'default': 'Scorecard Histogram Drift'}, 'drift_pct_threshold': {'type': 'float', 'default': 20.0}} ['visualization', 'credit_risk', 'logistic_regression'] ['classification']
validmind.unit_metrics.classification.Accuracy Accuracy Calculates the accuracy of a model ['dataset', 'model'] {} ['classification'] ['classification']
validmind.unit_metrics.classification.F1 F1 Calculates the F1 score for a classification model. ['model', 'dataset'] {} ['classification'] ['classification']
validmind.unit_metrics.classification.Precision Precision Calculates the precision for a classification model. ['model', 'dataset'] {} ['classification'] ['classification']
validmind.unit_metrics.classification.ROC_AUC ROC AUC Calculates the ROC AUC for a classification model. ['model', 'dataset'] {} ['classification'] ['classification']
validmind.unit_metrics.classification.Recall Recall Calculates the recall for a classification model. ['model', 'dataset'] {} ['classification'] ['classification']

The tags parameter facilitates searching tests by their tags. For instance, if you're interested in only tests associated designed for model_performance that produce a plot (denoted by the visualization tag)

list_tests(tags=["model_performance", "visualization"])
ID Name Description Required Inputs Params Tags Tasks
validmind.model_validation.RegressionResidualsPlot Regression Residuals Plot Evaluates regression model performance using residual distribution and actual vs. predicted plots.... ['model', 'dataset'] {'bin_size': {'type': 'float', 'default': 0.1}} ['model_performance', 'visualization'] ['regression']
validmind.model_validation.sklearn.ConfusionMatrix Confusion Matrix Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... ['dataset', 'model'] {'threshold': {'type': 'float', 'default': 0.5}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.PrecisionRecallCurve Precision Recall Curve Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... ['model', 'dataset'] {} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ROCCurve ROC Curve Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... ['model', 'dataset'] {} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.TrainingTestDegradation Training Test Degradation Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... ['datasets', 'model'] {'max_threshold': {'type': 'float', 'default': 0.1}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.ongoing_monitoring.CalibrationCurveDrift Calibration Curve Drift Evaluates changes in probability calibration between reference and monitoring datasets.... ['datasets', 'model'] {'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ROCCurveDrift ROC Curve Drift Compares ROC curves between reference and monitoring datasets.... ['datasets', 'model'] {} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']

The above parameters can be combined to create complex queries. For instance, to find tests that are compatible with 'sklearn' models, designed for 'classification' tasks, and produce a plot:

list_tests(
    tags=["model_performance", "visualization", "sklearn"], task="classification"
)
ID Name Description Required Inputs Params Tags Tasks
validmind.model_validation.sklearn.ConfusionMatrix Confusion Matrix Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... ['dataset', 'model'] {'threshold': {'type': 'float', 'default': 0.5}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.PrecisionRecallCurve Precision Recall Curve Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... ['model', 'dataset'] {} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.ROCCurve ROC Curve Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... ['model', 'dataset'] {} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.model_validation.sklearn.TrainingTestDegradation Training Test Degradation Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... ['datasets', 'model'] {'max_threshold': {'type': 'float', 'default': 0.1}} ['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.ongoing_monitoring.CalibrationCurveDrift Calibration Curve Drift Evaluates changes in probability calibration between reference and monitoring datasets.... ['datasets', 'model'] {'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']
validmind.ongoing_monitoring.ROCCurveDrift ROC Curve Drift Compares ROC curves between reference and monitoring datasets.... ['datasets', 'model'] {} ['sklearn', 'binary_classification', 'model_performance', 'visualization'] ['classification', 'text_classification']

Programmatic Use

To work with a specific set of tests programmatically, you can store the results in a variable. For instance, let's list all tests that are designed for Text Summarization tests and store them in text_summarization_tests for further use.

text_summarization_tests = list_tests(task="text_summarization", pretty=False)
text_summarization_tests
['validmind.data_validation.DatasetDescription',
 'validmind.data_validation.DatasetSplit',
 'validmind.data_validation.nlp.CommonWords',
 'validmind.data_validation.nlp.Hashtags',
 'validmind.data_validation.nlp.LanguageDetection',
 'validmind.data_validation.nlp.Mentions',
 'validmind.data_validation.nlp.Punctuations',
 'validmind.data_validation.nlp.StopWords',
 'validmind.data_validation.nlp.TextDescription',
 'validmind.model_validation.BertScore',
 'validmind.model_validation.BleuScore',
 'validmind.model_validation.ContextualRecall',
 'validmind.model_validation.MeteorScore',
 'validmind.model_validation.RegardScore',
 'validmind.model_validation.RougeScore',
 'validmind.model_validation.TokenDisparity',
 'validmind.model_validation.ToxicityScore',
 'validmind.model_validation.embeddings.CosineSimilarityComparison',
 'validmind.model_validation.embeddings.CosineSimilarityHeatmap',
 'validmind.model_validation.embeddings.EuclideanDistanceComparison',
 'validmind.model_validation.embeddings.EuclideanDistanceHeatmap',
 'validmind.model_validation.embeddings.PCAComponentsPairwisePlots',
 'validmind.model_validation.embeddings.TSNEComponentsPairwisePlots',
 'validmind.model_validation.ragas.AnswerCorrectness',
 'validmind.model_validation.ragas.AspectCritic',
 'validmind.model_validation.ragas.ContextEntityRecall',
 'validmind.model_validation.ragas.ContextPrecision',
 'validmind.model_validation.ragas.ContextPrecisionWithoutReference',
 'validmind.model_validation.ragas.ContextRecall',
 'validmind.model_validation.ragas.Faithfulness',
 'validmind.model_validation.ragas.NoiseSensitivity',
 'validmind.model_validation.ragas.ResponseRelevancy',
 'validmind.model_validation.ragas.SemanticSimilarity',
 'validmind.prompt_validation.Bias',
 'validmind.prompt_validation.Clarity',
 'validmind.prompt_validation.Conciseness',
 'validmind.prompt_validation.Delimitation',
 'validmind.prompt_validation.NegativeInstruction',
 'validmind.prompt_validation.Robustness',
 'validmind.prompt_validation.Specificity']

Delving into Test Details with describe_test

After identifying a set of potential tests, you might want to explore the specifics of an individual test. The describe_test function provides a deep dive into the details of a test. It reveals the test name, description, ID, test type, and required inputs. Below, we showcase how to describe a test using its ID:

describe_test("validmind.model_validation.sklearn.OverfitDiagnosis")

Next steps

By harnessing the functionalities presented in this guide, you should be able to easily list and filter through all of ValidMind's available tests and find those you are interested in running against your model and/or dataset. The next step is to take the IDs of the tests you'd like to run and either create a test suite for reuse or just run them directly to try them out. See the other notebooks for a tutorial on how to do both.

Discover more learning resources

We offer many interactive notebooks to help you document models:

  • Run tests & test suites
  • Code samples

Or, visit our documentation to learn more about ValidMind.

Explore test suites
Dataset Column Filters when Running Tests

© Copyright 2025 ValidMind Inc. All Rights Reserved.

  • Edit this page
  • Report an issue
Cookie Preferences
  • validmind.com

  • Privacy Policy

  • Terms of Use